Chinese Journal of Lasers, Volume. 49, Issue 11, 1106001(2022)
Fast Alignment of Wireless Optical Communication Using Two-Dimensional Mirror
[1] Zhao B Q, Yu X N, Dong Y et al. Tracking performance of mirrors in space laser communication networking[J]. Laser & Optoelectronics Progress, 58, 0906007(2021).
[2] Sun J, Huang P M, Yao Z S. Performance of satellite-to-ground laser communications under the influence of atmospheric turbulence and platform micro-vibration[J]. Laser & Optoelectronics Progress, 58, 0301003(2021).
[3] Li Q, Liu L, Ma X F et al. Development of multitarget acquisition, pointing, and tracking system for airborne laser communication[J]. IEEE Transactions on Industrial Informatics, 15, 1720-1729(2019).
[4] Sun X B, Kong M W, Alkhazragi O et al. Non-line-of-sight methodology for high-speed wireless optical communication in highly turbid water[J]. Optics Communications, 461, 125264(2020).
[5] Lin J M, Du Z H, Yu C Y et al. Machine-vision-based acquisition, pointing, and tracking system for underwater wireless optical communications[J]. Chinese Optics Letters, 19, 050604(2021).
[6] Lim H C, Choi C S, Sung K P et al. Centroid error analysis of beacon tracking under atmospheric turbulence for optical communication links[J]. Remote Sensing, 13, 1931(2021).
[7] Ke X Z, Wu J L, Yang S J. Research progress and prospect of atmospheric turbulence for wireless optical communication[J]. Chinese Journal of Radio Science, 36, 323-339(2021).
[8] Chen M N, Jin X Q, Li S B et al. Compensation of turbulence-induced wavefront aberration with convolutional neural networks for FSO systems[J]. Chinese Optics Letters, 19, 110601(2021).
[9] Ke X Z, Lei S C, Yang P S. Beam coaxial alignment detection in atmospheric laser communication[J]. Chinese Journal of Lasers, 43, 0606003(2016).
[10] Ke X Z, Zhang P. A tracking control system and tracking control method for wireless optical communication[P].
[11] Ke X Z, Lu N, Zhao L. An automatic beam capture device and a beam capture method[P].
[12] Dabiri M T, Sadough S M S, Ansari I S. Tractable optical channel modeling between UAVs[J]. IEEE Transactions on Vehicular Technology, 68, 11543-11550(2019).
[13] Zhang M, Li B, Tong S F. A new composite spiral scanning approach for beaconless spatial acquisition and experimental investigation of robust tracking control for laser communication system with disturbance[J]. IEEE Photonics Journal, 12, 7906212(2020).
[14] Xiao Y J, Dong R, Xiong Z et al. Research on fixed-point acquisition in optical communication based on GPS[J]. Semiconductor Optoelectronics, 32(2011).
[15] Xiao Y J, Ai Y, Dong R et al. Experiment of non-maneuvering target tracking based on ATP system[J]. Infrared and Laser Engineering, 41, 2439-2443(2012).
[16] Tan L Y, Wu S C, Han Q Q et al. Coarse tracking of periscope-type satellite optical communication terminals[J]. Optics and Precision Engineering, 20, 270-276(2012).
[17] Ke X Z, Wang J. A spot alignment method based on four quadrant detector[P].
[18] Chen S J, Zhang L, Wang J Y. Effects of digital to analog converter resolution on ATP system tracking accuracy[J]. Chinese Journal of Lasers, 44, 0806004(2017).
[19] Chen M W, Yang Y P, Jia X T et al. Investigation of positioning algorithm and method for increasing the linear measurement range for four-quadrant detector[J]. Optik, 124, 6806-6809(2013).
[20] Liu Y Q, Jiang H L, Tong S F. Study on stabilizational tracking technology for atmospheric laser communication system[J]. Chinese Journal of Lasers, 38, 0505005(2011).
[21] Li S M, Zhang Y Q. Annular facula detection and error compensation of four-quadrant photoelectric detector in space laser communication[J]. Chinese Journal of Lasers, 44, 1106005(2017).
[22] Vo Q S, Zhang X D, Fang F Z. Extended the linear measurement range of four-quadrant detector by using modified polynomial fitting algorithm in micro-displacement measuring system[J]. Optics & Laser Technology, 112, 332-338(2019).
[23] Bao J Y, Xing F, Sun T et al. CMOS imager non-uniformity response correction-based high-accuracy spot target localization[J]. Applied Optics, 58, 4560-4568(2019).
[24] Zhang W G, Guo W, Zhang C W et al. An improved method for spot position detection of a laser tracking and positioning system based on a four-quadrant detector[J]. Sensors, 19, 4722(2019).
[25] Chen G, Dong Z R, Geng J X et al. 155/622 Mb/s multiple transmitter laser communication systems[J]. Chinese Journal of Lasers, 31, 583-587(2004).
[26] Tolker-Nielsen T, Oppenhauser G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[J]. Proceedings of SPIE, 4635, 97-104(2002).
[27] Liu W, Yao K N, Huang D N et al. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency[J]. Optics Express, 24, 13288-13302(2016).
[28] Chang Q B, Chen W S, Liu J K et al. Development of a novel two-DOF piezo-driven fast steering mirror with high stiffness and good decoupling characteristic[J]. Mechanical Systems and Signal Processing, 159, 107851(2021).
[29] Dubra A, Massa J S, Paterson C. Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors[J]. Optics Express, 13, 9062-9070(2005).
[30] Zuo T, Huang H B, Xiao Y J. Fine tracking system design of space optical communication based on self-tuning control[J]. Chinese Journal of Scientific Instrument, 33, 1181-1186(2012).
[31] Jono T, Toyoshima M, Takahashi N et al. Laser tracking test under satellite microvibrational disturbances by OICETS ATP system[J]. Proceedings of SPIE, 4714, 97-104(2002).
[32] Borrello M. A multi stage pointing acquisition and tracking (PAT) control system approach for air to air laser communications[C], 3975-3980(2005).
[33] Suite M R, Burris H R, Moore C I et al. Fast steering mirror implementation for reduction of focal-spot wander in a long-distance free-space optical communication link[J]. Proceedings of SPIE, 5160, 439-446(2004).
[34] Wang F C, Wang Y T, Tian D P. Perfect tracking control for fast-steering mirror driven by voice coil motor[J]. Optics and Precision Engineering, 28, 1997-2006(2020).
[35] Wu X, Chen S H, Shi B Y et al. High-powered voice coil actuator for fast steering mirror[J]. Optical Engineering, 50, 023002(2011).
[36] Chen G Z, Xu S Q, Liu P K et al. Structural design and bandwidth characteristic of a fast steering mirror with large travel range[J]. Optics and Precision Engineering, 28, 90-101(2020).
[37] Pokorny P. One-mirror and two-mirror three-dimensional optical scanners: position and accuracy of laser beam spot[J]. Applied Optics, 53, 2730-2740(2014).
Get Citation
Copy Citation Text
Shangjun Yang, Xizheng Ke, Jiali Wu, Xuguang Liu. Fast Alignment of Wireless Optical Communication Using Two-Dimensional Mirror[J]. Chinese Journal of Lasers, 2022, 49(11): 1106001
Category: fiber optics and optical communications
Received: Aug. 27, 2021
Accepted: Oct. 28, 2021
Published Online: Jun. 2, 2022
The Author Email: Ke Xizheng (xzke@263.net)