Journal of Infrared and Millimeter Waves, Volume. 39, Issue 5, 567(2020)

Design and analysis of a broadband quasi-optical mode converter with a Denisov launcher

Hui-Qi BIAN1,2, Chao-Hai DU2、*, Shi PAN2, and Pu-Kun LIU2、*
Author Affiliations
  • 1Beijing Institution of Radio Measurement, Beijing100854, China
  • 2School of Electronics Engineering and Computer Science, Peking University, Beijing100871, China
  • show less
    References(18)

    [1] Petelin M I. One century of cyclotron radiation[J]. IEEE Trans Plasma Sci, 27, 294-302(1999).

    [2] Kartikeyan M, Borie E, Drumm O et al. Design of a 42-GHz 200-kW gyrotron operating at the second harmonic[J]. IEEE Trans Microwave Theory Tech, 52, 686-92(2004).

    [3] Thumm M K. Recent developments on high-power gyrotrons—Introduction to this special issue[J]. J Infrared Millim Terahertz Waves, 32, 241-52(2011).

    [4] Pan S, Du C-H, Qi X-B et al. Broadband terahertz-power extracting by using electron cyclotron maser[J]. Sci Rep, 7, 7265(2017).

    [6] Vlasov S N, Orlova I. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophys Quant Electron, 17, 115-9(1974).

    [7] E J. Gyrotron oscillators-Their principles and practice[J]. UK: Taylor & Francis(1993).

    [8] Denisov G, Kuftin A, Malygin V et al. 110 GHz gyrotron with a built-in high-efficiency converter[J]. Int J Electron, 72, 1079-91(1992).

    [9] Sabchevski S, Zhelyazkov I, Benova E et al[M]. Quasi-optical converters for high-power gyrotrons: A brief review of physical models, numerical methods and computer codes(2006).

    [10] Idehara T, Sabchevski S P. Development and applications of high—Frequency gyrotrons in FIR FU covering the sub-THz to THz range[J]. J Infrared Millim Terahertz Waves, 33, 667-94(2012).

    [11] Samartsev A, Avramidis K A, Gantenbein G et al. Efficient Frequency Step-Tunable Megawatt-Class $ D $-Band Gyrotron[J]. IEEE Trans Electron Devices, 62, 2327-32(2015).

    [12] Du C-H, Qi X-B, Liu P-K. Theoretical study of a broadband quasi-optical mode converter for pulse gyrotron devices[J]. IEEE Trans Plasma Sci, 44, 2348-55(2016).

    [13] Prinz O, Arnold A, Gantenbein G et al. Highly efficient quasi-optical mode converter for a multifrequency high-power gyrotron[J]. IEEE Trans Electron Devices, 56, 828-34(2009).

    [14] Jin J, Thumm M, Piosczyk B et al. Theoretical investigation of an advanced launcher for a 2-MW 170-GHz TE/sub 34, 19/coaxial cavity gyrotron[J]. IEEE Trans Microwave Theory Tech, 54, 1139-45(2006).

    [16] Jin J. Quasi-optical mode converter for a coaxial cavity gyrotron[M]. Citeseer(2007).

    [17] Doane J L. Propagation and mode coupling in corrugated and smooth-wall circular waveguides[J]. Infrared and millimeter waves, 13(1985).

    [19] Kong J A[M]. Electromagnetic wave theory(1986).

    [20] Qi X-B, Du C-H, Pan S et al. Terahertz broadband-tunable minigyrotron with a pulse magnet[J]. IEEE Trans Electron Devices, 64, 527-35(2017).

    [22] Li G, Jin J, Tomasz R et al. Analysis of a quasi-optical launcher toward a step-tunable 2-MW coaxial-cavity gyrotron[J]. IEEE Trans Plasma Sci, 38, 1361-1368(2010).

    Tools

    Get Citation

    Copy Citation Text

    Hui-Qi BIAN, Chao-Hai DU, Shi PAN, Pu-Kun LIU. Design and analysis of a broadband quasi-optical mode converter with a Denisov launcher[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 567

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Millimeter Wave and Terahertz Technology

    Received: Dec. 16, 2019

    Accepted: --

    Published Online: Dec. 29, 2020

    The Author Email: Chao-Hai DU (duchaohai@pku.edu.cn), Pu-Kun LIU (pkliu@pku.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2020.05.006

    Topics