Advanced Photonics, Volume. 6, Issue 6, 066002(2024)

Deep-learning-driven end-to-end metalens imaging

Joonhyuk Seo1、†, Jaegang Jo2, Joohoon Kim3, Joonho Kang4, Chanik Kang1, Seong-Won Moon3, Eunji Lee5, Jehyeong Hong1,2,4, Junsuk Rho3,5,6,7,8、*, and Haejun Chung1,2,4、*
Author Affiliations
  • 1Hanyang University, Department of Artificial Intelligence, Seoul, Republic of Korea
  • 2Hanyang University, Department of Electronic Engineering, Seoul, Republic of Korea
  • 3Pohang University of Science and Technology, Department of Mechanical Engineering, Pohang, Republic of Korea
  • 4Hanyang University, Department of Artificial Intelligence Semiconductor Engineering, Seoul, Republic of Korea
  • 5Pohang University of Science and Technology, Department of Chemical Engineering, Pohang, Republic of Korea
  • 6Pohang University of Science and Technology, Department of Electrical Engineering, Pohang, Republic of Korea
  • 7POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea
  • 8National Institute of Nanomaterials Technology, Pohang, Republic of Korea
  • show less
    References(65)

    [21] Z. Li et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv., 7, eabe4458(2021).

    [33] J. E. Fröch et al. Beating bandwidth limits for large aperture broadband nano-optics(2024).

    [38] L. Chen et al. Simple baselines for image restoration, 17-33(2022).

    [39] S. W. Zamir et al. Restormer: efficient transformer for high-resolution image restoration, 5728-5739(2022).

    [41] J. W. Goodman. Introduction to Fourier Optics(2005).

    [42] Y. Zhou et al. Image restoration for under-display camera, 9179-9188(2021).

    [44] Y. Li et al. NTIRE 2023 challenge on image denoising: methods and results, 1904-1920(2023).

    [45] S. Nah et al. NTIRE 2021 challenge on image deblurring, 149-165(2021).

    [47] M. T. Heath. Scientific Computing: An Introductory Survey(2018).

    [48] R. Yang et al. NTIRE 2022 challenge on super-resolution and quality enhancement of compressed video: dataset, methods and results, 1221-1238(2022).

    [49] W. Wu et al. URetinex-Net: Retinex-based deep unfolding network for low-light image enhancement, 5901-5910(2022).

    [51] E. Agustsson, R. Timofte. NTIRE 2017 Challenge on single image super-resolution: dataset and study, 1122-1131(2017).

    [52] S. Nah, T. Hyun Kim, K. Mu Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring, 3883-3891(2017).

    [53] X. Chu et al. Improving image restoration by revisiting global information aggregation, 53-71(2022).

    [55] T. Miyato et al. Spectral normalization for generative adversarial networks(2018).

    [56] J. H. Lim, J. C. Ye. Geometric GAN(2017).

    [58] L. Chen et al. HINet: half instance normalization network for image restoration, 182-192(2021).

    [60] R. Zhang et al. The unreasonable effectiveness of deep features as a perceptual metric, 586-595(2018).

    [61] A. V. Oppenheim, J. S. Lim. The importance of phase in signals. Proc. IEEE, 69, 529-541(1981).

    [63] W. Liu et al. SSD: single shot multibox detector, 21-37(2016).

    [64] Y. Cui et al. Selective frequency network for image restoration(2022).

    [65] Y. Zhang et al. Image super-resolution using very deep residual channel attention networks, 286-301(2018).

    Tools

    Get Citation

    Copy Citation Text

    Joonhyuk Seo, Jaegang Jo, Joohoon Kim, Joonho Kang, Chanik Kang, Seong-Won Moon, Eunji Lee, Jehyeong Hong, Junsuk Rho, Haejun Chung, "Deep-learning-driven end-to-end metalens imaging," Adv. Photon. 6, 066002 (2024)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 13, 2024

    Accepted: Oct. 14, 2024

    Posted: Oct. 14, 2024

    Published Online: Nov. 15, 2024

    The Author Email: Rho Junsuk (jsrho@postech.ac.kr), Chung Haejun (haejun@hanyang.ac.kr)

    DOI:10.1117/1.AP.6.6.066002

    CSTR:32187.14.1.AP.6.6.066002

    Topics