Advanced Photonics, Volume. 6, Issue 6, 066002(2024)
Deep-learning-driven end-to-end metalens imaging
[21] Z. Li et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv., 7, eabe4458(2021).
[33] J. E. Fröch et al. Beating bandwidth limits for large aperture broadband nano-optics(2024).
[38] L. Chen et al. Simple baselines for image restoration, 17-33(2022).
[39] S. W. Zamir et al. Restormer: efficient transformer for high-resolution image restoration, 5728-5739(2022).
[41] J. W. Goodman. Introduction to Fourier Optics(2005).
[42] Y. Zhou et al. Image restoration for under-display camera, 9179-9188(2021).
[44] Y. Li et al. NTIRE 2023 challenge on image denoising: methods and results, 1904-1920(2023).
[45] S. Nah et al. NTIRE 2021 challenge on image deblurring, 149-165(2021).
[47] M. T. Heath. Scientific Computing: An Introductory Survey(2018).
[48] R. Yang et al. NTIRE 2022 challenge on super-resolution and quality enhancement of compressed video: dataset, methods and results, 1221-1238(2022).
[49] W. Wu et al. URetinex-Net: Retinex-based deep unfolding network for low-light image enhancement, 5901-5910(2022).
[51] E. Agustsson, R. Timofte. NTIRE 2017 Challenge on single image super-resolution: dataset and study, 1122-1131(2017).
[52] S. Nah, T. Hyun Kim, K. Mu Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring, 3883-3891(2017).
[53] X. Chu et al. Improving image restoration by revisiting global information aggregation, 53-71(2022).
[55] T. Miyato et al. Spectral normalization for generative adversarial networks(2018).
[56] J. H. Lim, J. C. Ye. Geometric GAN(2017).
[58] L. Chen et al. HINet: half instance normalization network for image restoration, 182-192(2021).
[60] R. Zhang et al. The unreasonable effectiveness of deep features as a perceptual metric, 586-595(2018).
[61] A. V. Oppenheim, J. S. Lim. The importance of phase in signals. Proc. IEEE, 69, 529-541(1981).
[63] W. Liu et al. SSD: single shot multibox detector, 21-37(2016).
[64] Y. Cui et al. Selective frequency network for image restoration(2022).
[65] Y. Zhang et al. Image super-resolution using very deep residual channel attention networks, 286-301(2018).
Get Citation
Copy Citation Text
Joonhyuk Seo, Jaegang Jo, Joohoon Kim, Joonho Kang, Chanik Kang, Seong-Won Moon, Eunji Lee, Jehyeong Hong, Junsuk Rho, Haejun Chung, "Deep-learning-driven end-to-end metalens imaging," Adv. Photon. 6, 066002 (2024)
Category: Research Articles
Received: Jun. 13, 2024
Accepted: Oct. 14, 2024
Posted: Oct. 14, 2024
Published Online: Nov. 15, 2024
The Author Email: Rho Junsuk (jsrho@postech.ac.kr), Chung Haejun (haejun@hanyang.ac.kr)