Chinese Journal of Lasers, Volume. 40, Issue 6, 602005(2013)

Influence of Pump Wavelength and Nd3+ Doped Concentration on the Performance of Intracavity Doubling Single-Frequency Lasers

Wang Yajun*, Yang Wenhai, Zheng Yaohui, and Peng Kunchi
Author Affiliations
  • [in Chinese]
  • show less
    References(21)

    [1] [1] Y. Bo, A. C. Geng, Y. Bi et al.. High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design[J]. Appl. Opt., 2006, 45(11): 2499~2503

    [2] [2] S. Konno, T. Kojima, S. Fujikawa et al.. High-brightness 138 W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched NdYAG laser[J]. Opt. Lett., 2000, 25(2): 105~107

    [3] [3] R. Lavi, S. Jackel, Y. Tzuk et al.. Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level [J]. Appl. Opt., 1999, 38(36): 7382~7385

    [4] [4] Z. Zhuo, T Li, X. M. Li et al.. Investigation of Nd:YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser[J]. Opt. Commun., 2007, 274(1): 176~181

    [6] [6] T. Sudmeyer, C. Krankel, C. R. E. Baer et al.. High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation[J]. Appl. Phys. B, 2009, 97(2): 281~295

    [7] [7] R. J. Beach. High Efficiency 2 Micrometer Laser Utilizing Wing-Pumped TM3+ and a Laser Diode Array End-Pumping Architecture[P]. US Patent: 5689522, 1997

    [8] [8] Ai Qingkang, Chang Liang, Chen Meng et al.. Thermal analysis of Nd:YVO4 pumped by 808 nm and 888 nm[J]. Chinese J. Lasers, 2011, 38(4):0402001

    [10] [10] L. McDonagh, R. Wallenstein, R. Knappe et al.. High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm[J]. Opt. Lett., 2006, 31(22): 3297~3299

    [11] [11] P. Zhu, D. J. Li, P. X. Hu et al.. High efficiency 165 W near-diffraction-limited Nd:YVO4 slab oscillator pumped at 880 nm[J]. Opt. Lett., 2008, 33(17): 1930~1932

    [12] [12] D. Sangla, M. Castaining, F. Balembois et al.. Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm[J]. Opt. Lett., 2009, 34(14): 2159~2160

    [13] [13] X. Delen, F. Balembois, O. Mussel et al.. Characteristics of laser operation at 1064 nm in Nd:YVO4 under diode pumping at 808 nm and 914 nm[J]. J. Opt. Soc. Am. B, 2011, 28(1): 52~54

    [14] [14] Y. F. Chen, Y. P. Lan, S. C. Wang. Modelling of diode-end-pumped Q-switched solid-state lasers: influence of energy-transfer upconversion[J]. J. Opt. Soc. Am. B, 2002, 19(7): 1558~1563

    [15] [15] V. Ostroumov, T. Jensen, J. P. Meyn et all.. Study of luminescence concentration quenching and energy transfer upconversion in LaSc3(BO3)4 and GdVO4 laser crystals[J]. J. Opt. Soc. Am. B, 1998, 15(3): 1052~1060

    [16] [16] Y. J. Wang, Y. H. Zheng, S. Zhu et all.. High-power single-frequency Nd:YVO4 green laser by sel-compensation of astigmatisms[J]. Laser Physics Letters, 2012, 9(7): 506~510

    [17] [17] Zheng Yaohui, Wang Yajun, Peng Kunchi. Single-end pumping, single-frequency Nd:YVO4/LBO, laser with output power of 21.5 W[J]. Chinese J. Lasers, 2011, 39(6): 0602011

    [18] [18] P. J. Hardman, W. A. Clarkson, G. J. Friel et al.. Energy-transfer upconversion and thermal lensing in high-power end-pumped NdYLF laser crystals[J]. IEEE J. Quantum Electron., 1999, 35(4): 647~655

    [19] [19] A. Sennaroglu. Influence of neodymium concentration on the strength of thermal effects in continuous-wave diode-pumped Nd:YVO4 lasers at 1064 nm[J]. Opt. & Quantum Electron., 2000, 32(12): 1307~1317

    [20] [20] K. I. Martin, W. A. Clarkson, D. C. Hanna. Self-suppression of axial mode hopping by intracavity second-harmonic generation[J]. Opt. Lett., 1997, 22(6): 375~377

    [21] [21] Y. H. Zheng, F. Q. Li, Y. J. Wang et al.. High-stablity single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter[J]. Opt. Commun., 2010, 283(2): 309~312

    CLP Journals

    [1] Yin Qiwei, Lu Huadong. Influence of Wavelength of Pump Source on Output Power of 1064 nm Laser[J]. Laser & Optoelectronics Progress, 2015, 52(9): 91402

    [2] Miao Qingjie, Pan Sunqiang, Liu Bin, Xiang Zhen, Chen Jun. Investigation of Thermally Induced Birefringence Effect in Natural Birefringent Crystals[J]. Acta Optica Sinica, 2015, 35(6): 626001

    [3] Pan Sunqiang, Zhao Zhigang, Liu Chong, Ge Jianhong, Xiang Zhen. Mechanism Investigation of Beam Quality Evolution within Laser Oscillator[J]. Laser & Optoelectronics Progress, 2015, 52(11): 111406

    [4] Li Zhixiu, Yang Wenhai, Wang Yajun, Zheng Yaohui. Optimal Design of Single-Frequency Laser System for 795 nm Squeezed Light Source[J]. Chinese Journal of Lasers, 2015, 42(9): 902002

    [5] Li Huijuan, Zhang Miao, Li Fengqin. High-Power Single-Frequency 461 nm Generation from an Intracavity Doubling of Ti∶Sapphire Laser with LBO[J]. Chinese Journal of Lasers, 2016, 43(3): 302003

    [6] Qu Pengfei, Wang Shiyu, Guo Zhen, Cai Defang, Li Bingbin. Adaptive Adjusting Technique of Thermal Effect to Laser Beam Quality[J]. Acta Optica Sinica, 2017, 37(5): 514001

    Tools

    Get Citation

    Copy Citation Text

    Wang Yajun, Yang Wenhai, Zheng Yaohui, Peng Kunchi. Influence of Pump Wavelength and Nd3+ Doped Concentration on the Performance of Intracavity Doubling Single-Frequency Lasers[J]. Chinese Journal of Lasers, 2013, 40(6): 602005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser physics

    Received: Mar. 1, 2013

    Accepted: --

    Published Online: May. 30, 2013

    The Author Email: Yajun Wang (wangyajun_166@163.com)

    DOI:10.3788/cjl201340.0602005

    Topics