Journal of Synthetic Crystals, Volume. 54, Issue 4, 617(2025)
Effect of Strain on Optical Properties of Si Doped A-TiO2 Studied by the First-Principles
[1] [1] SCHLOEGL R. Fuel for thought[J]. Nature Materials, 2008, 7(10): 772-774.
[2] [2] ULMER U, DINGLE T, DUCHESNE P N, et al. Fundamentals and applications of photocatalytic CO2 methanation[J]. Nature Communications, 2019, 10(1): 3169.
[3] [3] WU H, TAN H L, TOE C Y, et al. Photocatalytic and photoelectrochemical systems: similarities and differences[J]. Advanced Materials, 2020, 32(18): 1904717.
[4] [4] LI R G, ZHANG F X, WANG D E, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J]. Nature Communications, 2013, 4(1): 1432.
[5] [5] WU Y A, MCNULTY I, LIU C, et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol[J]. Nature Energy, 2019, 4(11): 957-968.
[6] [6] HITOKI G, ISHIKAWA A, TAKATA T, et al. Ta3N5 as a novel visible light-driven photocatalyst (<600 nm)[J]. Chemistry Letters, 2002, 31(7): 736-737.
[7] [7] MARTIN D J, UMEZAWA N, CHEN X W, et al. Facet engineered Ag3PO4 for efficient water photooxidation[J]. Energy & Environmental Science, 2013, 6(11): 3380-3386.
[8] [8] THOMPSON T L, YATES J T Jr. Surface science studies of the photoactivation of TiO2: new photochemical processes[J]. Chemical Reviews, 2006, 106(10): 4428-4453.
[9] [9] FUJISHIMA A, ZHANG X T, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12): 515-582.
[10] [10] KAMAT P V. Semiconductor surface chemistry as holy grail in photocatalysis and photovoltaics[J]. Accounts of Chemical Research, 2017, 50(3): 527-531.
[11] [11] CHEN X B, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750.
[12] [12] ZHU J, FAN F T, CHEN R T, et al. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst[J]. Angewandte Chemie (International Ed), 2015, 54(31): 9111-9114.
[13] [13] YU J G, LOW J, XIAO W, et al. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed{001}and{101}facets[J]. Journal of the American Chemical Society, 2014, 136(25): 8839-8842.
[14] [14] KUSAKA R, NIHONYANAGI S, TAHARA T. The photochemical reaction of phenol becomes ultrafast at the air-water interface[J]. Nature Chemistry, 2021, 13(4): 306-311.
[15] [15] WANG D Y, LIN H C, YEN C C. Influence of metal plasma ion implantation on photo-sensitivity of anatase TiO2 thin films[J]. Thin Solid Films, 2006, 515(3): 1047-1052.
[16] [16] LEYLAND N S, PODPORSKA-CARROLL J, BROWNE J, et al. Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections[J]. Scientific Reports, 2016, 6: 24770.
[17] [17] SOOD S, UMAR A, MEHTA S K, et al. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds[J]. Journal of Colloid and Interface Science, 2015, 450: 213-223.
[18] [18] MOMENI M M. Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes[J]. Rare Metals, 2017, 36(11): 865-871.
[19] [19] KONG L N, WANG C H, WAN F X, et al. Transparent Nb-doped TiO2 films with the [001] preferred orientation for efficient photocatalytic oxidation performance[J]. Dalton Transactions, 2017, 46(44): 15363-15372.
[20] [20] GOGOI D, NAMDEO A, GOLDER A K, et al. Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2729-2744.
[21] [21] KUMAR S G, RAO K S R K. Comparison of modification activity of metal oxide semiconductors (TiO2, WO3, and ZnO)[J]. Applied Surface Science, 2017, 391: 124-148.
[22] [22] HOU X H, WANG C W, ZHU W D, et al. Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect[J]. Solid State Sciences, 2014, 29: 27-33.
[23] [23] LI M, XING Z P, JIANG J J, et al.In-situTi3+/S doped high thermostable anatase TiO2 nanorods as efficient visible-light-driven photocatalysts[J]. Materials Chemistry and Physics, 2018, 219: 303-310.
[24] [24] BAO N, WEI Z T, MA Z H, et al. Si-doped mesoporous TiO2 continuous fibers: preparation by centrifugal spinning and photocatalytic properties[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 129-136.
[25] [25] YAN X L, HE J, EVANS D G, et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors[J]. Applied Catalysis B: Environmental, 2005, 55(4): 243-252.
[26] [26] CHEN C L, WEI Y L, YUAN G Z, et al. Synergistic effect of Si doping and heat treatments enhances the photoelectrochemical water oxidation performance of TiO2 nanorod arrays[J]. Advanced Functional Materials, 2017, 27(31): 1701575.
[27] [27] SHI W M, CHEN Q F, XU Y, et al. Investigation of the silicon concentration effect on Si-doped anatase TiO2 by first-principles calculation[J]. Journal of Solid State Chemistry, 2011, 184(8): 1983-1988.
[32] [32] LIU G, YANG H G, PAN J, et al. Titanium dioxide crystals with tailored facets[J]. Chemical Reviews, 2014, 114(19): 9559-9612.
[33] [33] SCANLON D O, DUNNILL C W, BUCKERIDGE J, et al. Band alignment of rutile and anatase TiO2[J]. Nature Materials, 2013, 12: 798-801.
[34] [34] BARNARD A S, ZAPOL P, CURTISS L A. Modeling the morphology and phase stability of TiO2 nanocrystals in water[J]. Journal of Chemical Theory and Computation, 2005, 1(1): 107-116.
[35] [35] YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453(7195): 638-641.
[36] [36] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244-13249.
[37] [37] TANG H, LVY F, BERGER H, et al. Urbach tail of anatase TiO2[J]. Physical Review B, 1995, 52(11): 7771-7774.
[38] [38] CHADI D J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747.
[39] [39] PACK J D, MONKHORST H J. Special points for Brillouin-zone integrations: a reply[J]. Physical Review B, 1977, 16(4): 1748-1749.
[40] [40] LINPENG X, KARIN T, DURNEV M, et al. Optical spin control and coherence properties of acceptor bound holes in strained GaAs[J]. Physical Review B, 2021, 103: 115412.
[45] [45] GOEL S, ANH L D, OHYA S, et al. Ferromagnetic resonance and control of magnetic anisotropy by epitaxial strain in the ferromagnetic semiconductor (Ga0.8, Fe0.2)Sb at room temperature[J]. Physical Review B, 2019, 99: 014431.
[46] [46] PAN F C, LIN X L, WANG X M. Strain-tuned magnetic properties in (Ga, Fe)Sb: first-principles study[J]. Chinese Physics B, 2021, 30(9): 096105.
[47] [47] PAN F, LIN X L, WANG X M. The magnetic and optical properties of Zr doped GaSb: the first-principles calculation study[J]. Japanese Journal of Applied Physics, 2021, 60: 063001.
[53] [53] HOU B W, ZHANG Y M, ZHANG H, et al. Room temperature bound excitons and strain-tunable carrier mobilities in Janus monolayer transition-metal dichalcogenides[J]. Journal of Physical Chemistry Letters, 2020, 11: 3116.
[54] [54] VU T, NGUYEN C, PHUC H, et al. Theoretical prediction of electronic, transport, optical, and thermoelectric properties of Janus monolayers In2XO (X=S, Se, Te)[J]. Physical Review B, 2021, 103: 085422.
[58] [58] CIANCI S, BLUNDO E, TUZI F, et al. Strain engineering of the transition metal dichalcogenide chalcogen-alloy WSSe[J]. Journal of Applied Physics, 2024, 135(24): 244304.
[59] [59] WAKABAYASHI Y K, KOBAYASHI M, SEKI Y, et al. SrRuO3 under tensile strain: thickness-dependent electronic and magnetic properties[J]. Journal of Applied Physics, 2024, 136(4): 043907.
Get Citation
Copy Citation Text
ZHANG Jiaqi, LIN Xueling, TIAN Wenhu, MA Wenjie, ZHANG Xiu, MA Xiaowei, ZHU Qiaoping, HAO Rui, PAN Fengchun. Effect of Strain on Optical Properties of Si Doped A-TiO2 Studied by the First-Principles[J]. Journal of Synthetic Crystals, 2025, 54(4): 617
Category:
Received: Aug. 13, 2024
Accepted: Jun. 5, 2025
Published Online: Jun. 5, 2025
The Author Email: LIN Xueling (nxulxl@163.com)