Opto-Electronic Engineering, Volume. 46, Issue 12, 190159(2019)
Improved algorithm of Faster R-CNN based on double threshold-non-maximum suppression
[1] [1] Borji A, Cheng M M, Jiang H Z, et al. Salient object detection: a benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706–5722.
[2] [2] Luo H B, Xu L Y, Hui B, et al. Status and prospect of target tracking based on deep learning[J]. Infrared and Laser Engineering, 2017, 46(5): 0502002.
[3] [3] Hou Z Q, Han C Z. A survey of visual tracking[J]. Acta Automatica Sinica, 2006, 32(4): 603–617.
[4] [4] Xin P, Xu Y L, Tang H, et al. Fast airplane detection based on multi-layer feature fusion of fully convolutional networks[J]. Acta Optica Sinica, 2018, 38(3): 0315003.
[7] [7] Zhou X Y, Liu J, Lu X, et al. A method for pedestrian detection by combining textual and visual information[J]. Acta Electronica Sinica, 2017, 45(1): 140–146.
[8] [8] Cao M W, Yu Y. Moving object detection based on multi-layer background model[J]. Acta Electronica Sinica, 2016, 44(9): 2126–2133.
[9] [9] Zhang Z S, Qiao S Y, Xie C H, et al. Single-shot object detection with enriched semantics[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 5813–5821.
[10] [10] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 779–788.
[11] [11] Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[EB/OL]. (2016-12-29) [2019-05-28]. arXiv: 1512. 02325 v1. https://arxiv.org/abs/1512.02325v1.
[12] [12] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
[13] [13] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916.
[14] [14] Girshick R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
[15] [15] Ren S, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[EB/OL]. (2015-06-04)[2019-05-28]. arXiv: 1506.01497. https://arxiv.org/ abs/1506.01497?source=post_page.
[16] [16] Bodla N, Singh B, Chellappa R, et al. Soft-NMS – improving object detection with one line of code[C]//Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5562–5570.
[17] [17] He K M, Gkioxari G, Dollár P, et al. Mask R-CNN[C]// Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.
[18] [18] Wang X L, Shrivastava A, Gupta A. A-Fast-RCNN: hard positive generation via adversary for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3039–3048.
[19] [19] Kong T, Sun F C, Yao A B, et al. RON: reverse connection with objectness prior networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5244–5252.
[20] [20] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525.
[21] [21] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, doi: 10.1109/TPAMI.2018.2858826.
[22] [22] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2019-05-28]. arXiv: 1804.02767. https://arxiv.org/abs/1804.02767.
[23] [23] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
[24] [24] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
Get Citation
Copy Citation Text
Hou Zhiqiang, Liu Xiaoyi, Yu Wangsheng, Ma Sugang. Improved algorithm of Faster R-CNN based on double threshold-non-maximum suppression[J]. Opto-Electronic Engineering, 2019, 46(12): 190159
Category: Article
Received: Apr. 8, 2019
Accepted: --
Published Online: Jan. 9, 2020
The Author Email: Xiaoyi Liu (18829290763@163.com)