Chinese Optics, Volume. 15, Issue 5, 954(2022)

Survey of non-blind image restoration

Hang YANG*
Author Affiliations
  • Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    Figures & Tables(13)
    Diagram of linear time invariant system
    Flow chart of ForWaRD algorithm
    Flow chart of image restoration method based on BM3D[31]
    Learned dictionary from non-blind image restoration algorithm[68]. (a) Partial restoration image for Barbara image; (b) the learned dictionary
    Illustration of group construction[71]
    Denoising Network structure[93]
    The image restoration framework based on CV-CNN network[97]
    The network structure proposed by Vasu[115]
    • Table 1. Experimental settings

      View table
      View in Article

      Table 1. Experimental settings

      序号点扩散函数噪声水平图像
      19 × 9 boxcarBSNR = 40 dBCameraman
      2$k(x,y) = 1/({x^2} + {y^2}),x,y = - 7,\cdots,7$$ {\sigma ^2} = 2 $Cameraman
      3$k(x,y) = 1/({x^2} + {y^2}),x,y = - 7,\cdots,7$$ {\sigma ^2} = 8 $Cameraman
      4$k = {[1,4,6,4,1]^{\rm{T}}}[1,4,6,4,1]/256$$ {\sigma ^2} = 49 $Lena
      5Gaussian型点扩散函数,方差为1.6$ {\sigma ^2} = 2 $Barbara
      6Gaussian型点扩散函数,方差为0.4$ {\sigma ^2} = 64 $House
    • Table 2. Comparison of ISNR output by eight methods

      View table
      View in Article

      Table 2. Comparison of ISNR output by eight methods

      实验 方法 123456
      ForWaRD[15]7.406.755.072.980.985.52
      ShearDec[21]7.897.555.56
      GSM[23]−1.616.845.290.955.98
      SV-GSM[24]7.337.455.551.366.02
      LPA-ICI[26]8.297.825.983.90
      SA-DCT[27]8.558.116.334.491.025.96
      SURE-LET[25]7.847.545.224.421.064.38
      BM3DDEB[31]8.348.196.404.811.287.21
    • Table 3. Experimental setup for iterative methods

      View table
      View in Article

      Table 3. Experimental setup for iterative methods

      序号点扩散函数噪声水平
      1$ k(x,y) = 1/({x^2} + {y^2}),x,y = - 7,\cdots,7 $${\sigma ^2} = 2$
      2$ k(x,y) = 1/({x^2} + {y^2}),x,y = - 7,\cdots,7 $${\sigma ^2} = 8 $
      39 × 9 boxcarBSNR = 40 dB
      4$ k = {[1,4,6,4,1]^{\rm{T} } }[1,4,6,4,1]/256 $${\sigma ^2} = 49 $
      5Gaussian型点扩散函数,方差为1.6${\sigma ^2} = 2 $
      6Gaussian型点扩散函数,方差为0.4${\sigma ^2} = 64 $
    • Table 4. [in Chinese]

      View table
      View in Article

      Table 4. [in Chinese]

      实验序号
      123456
      方法Cameraman
      BM3DDEB[31]8.196.408.343.343.734.70
      L0-Abs[62]7.705.559.102.933.491.77
      CGMK[36]7.805.499.152.803.543.33
      TVMM[34]7.415.178.542.573.361.30
      GFD[33]8.386.529.733.574.02-
      NCSR[70]8.786.6910.333.784.604.50
      GSR[71]8.396.3910.083.333.944.76
      IDDBM3D[73]8.857.1210.453.984.314.89
      LRD[76]8.907.0510.703.994.624.62
      House
      BM3DDEB[31]9.328.1410.855.134.567.21
      L0-Abs[62]8.407.1211.064.554.802.15
      CGMK[36]8.316.9710.754.484.974.59
      TVMM[34]7.986.5710.394.124.542.44
      GFD[33]9.397.7512.025.215.39
      NCSR[70]9.968.4813.125.815.676.94
      GSR[71]10.028.5613.446.005.957.18
      IDDBM3D[73]9.958.5512.895.795.747.13
      LRD[76]10.098.6713.496.036.226.74
      Lena
      BM3DDEB[31]7.956.537.974.814.376.40
      L0-Abs[62]6.665.717.794.094.221.93
      CGMK[36]6.765.377.863.493.934.46
      TVMM[34]6.364.987.473.523.612.79
      GFD[33]8.126.658.974.774.95-
      NCSR[70]8.036.549.254.934.866.19
      GSR[71]8.246.769.435.174.966.57
      IDDBM3D[73]7.976.618.914.974.856.34
      LRD[76]8.256.789.315.135.086.13
      Barbara
      BM3DDEB[31]7.803.945.861.901.285.80
      L0-Abs[62]3.511.533.980.730.811.17
      CGMK[36]2.451.343.550.440.810.38
      TVMM[34]3.101.333.490.410.750.59
      NCSR7.763.645.922.061.435.50
      GSR[71]8.984.807.152.191.586.20
      IDDBM3D[73]7.643.966.051.881.165.45
      LRD[76]8.315.176.952.341.705.37
    • Table 5. Experimental comparison of deep learning of different methods

      View table
      View in Article

      Table 5. Experimental comparison of deep learning of different methods

      Levin[106]Sun[107]Martin[108]
      σ1%3%5%1%5%1%5%
      EPLL[82]34.0629.0926.5432.4826.7829.8124.66
      0.93100.84600.77850.88150.69750.83830.6276
      CSF[84]31.0928.0126.3231.5226.6229.0024.93
      0.90240.80130.74270.86220.67350.82300.6428
      MLP[89]32.0827.0025.3831.4724.6528.4724.01
      0.88840.70160.63300.85350.51980.79770.5619
      LDT[109]31.5328.3926.7030.5226.7128.2024.90
      0.89770.80520.74680.83990.66940.79220.6358
      FCN[94]33.2229.4927.7232.3627.6729.5125.45
      0.92670.85990.81420.88530.73400.83390.6771
      IRCNN[93]34.3330.0428.5133.5727.6430.6325.65
      0.92100.81560.77620.89770.68840.86450.6640
      FDN[87]34.0529.7727.9432.6327.7529.9325.93
      0.93350.85830.81390.88870.73190.85550.6943
      FNBD[88]34.8130.6327.9331.2227.6330.9225.49
      0.93980.86580.77590.88600.70100.87990.6589
      RGDN[92]33.9629.7127.4531.2526.9329.5125.33
      0.93950.86620.78890.88690.71610.86160.6688
      VEM[99]34.3130.5028.5232.7329.41
      0.93820.87980.83480.89520.8055
      DWDN[101]36.9032.7730.7734.0531.74
      0.96140.91790.88570.92250.8938
      CV-CNN[97]35.4430.8528.8033.1029.54
      0.94670.88290.83810.90220.8094
      SVMAP[110]34.5129.2031.8927.25
      0.92730.79400.89730.7550
    Tools

    Get Citation

    Copy Citation Text

    Hang YANG. Survey of non-blind image restoration[J]. Chinese Optics, 2022, 15(5): 954

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: May. 16, 2022

    Accepted: --

    Published Online: Sep. 29, 2022

    The Author Email:

    DOI:10.37188/CO.2022-0099

    Topics