Laser & Optoelectronics Progress, Volume. 55, Issue 2, 020003(2018)

Research Progress on Key Technologies of Free-Space Quantum Key Distributions

Ru Yang, Yunxia Li, Lei Shi*, Wen Meng, and Junwen Luo
Author Affiliations
  • Institute of Information and Navigation, Air Force Engineering University, Xi'an, Shaanxi 710077, China
  • show less
    References(39)

    [1] Bennett C H, Bessette F, Brassard G et al. Experimental quantum cryptography[J]. Journal of Cryptology, 5, 3-28(1992).

    [3] Moll F, Horwath J, Fuchs C et al. Air to ground quantum key distribution[C]. SPIE, 8518, 85180D(2013).

    [7] Vallone G, Bacco D, Dequal D et al. Experimental satellite quantum communications[J]. Physical Review Letters, 115, 040502(2015).

    [14] Heim B, Elser D, Bartley T et al. Free space quantum key distribution with coherent polarization states[C]. European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, ED5_4(2009).

    [18] Heine F, Mühlnikel G, Zech H et al. LCT for the European data relay system: in orbit commissioning of the Alphasat and Sentinel 1A LCTs[C]. SPIE, 9354, 93540G(2015).

    [19] Moll F, Weinfurter H, Rau M et al. Aerospace laser communications technology as enabler for worldwide quantum key distribution[C]. SPIE, 9900, 99000K(2016).

    [20] Elser D, Gunthner K, Khan I et al. Satellite quantum communication via the Alphasat laser communication terminal-quantum signal from 36 thousand kilometers above earth[C]. IEEE International Conference on Space Optical Systems and Applications, 1-4(2015).

    [27] Lu Q, Zeng F, Zhang Y L et al. Influence of sky background radiation on bit error rate of atmospheric laser communication system[J]. Laser & Optoelectronics Progress, 53, 070103(2016).

    [30] Chen S Y, Ding P F, Pu J X. Research on beam and degree of polarization of partially coherent radially polarized beam in turbulent atmosphere[J]. Laser & Optoelectronics Progress, 52, 090101(2015).

    [31] Zhang X, Wan J, Yan C. et al. The development and application of single-photon detectors[C]. SPIE, 7055, 70550V(2008).

    [32] Dong W Q, Li A, Xu Z Z et al[J]. Development of cryogenic system used in quantum communication with superconducting single photon detector Cryogenics, 2016, 45-49.

    [33] Zhang Z, Zhu C, He G. Improving the performance of continuous variable quantum key distribution using fading effects of free-space channel[C]. SPIE, 9619, 96190B(2015).

    [34] Chen J J, Han Z F, Zhao Y B et al. The effect of balanced homodyne detection on continuous variable quantum key distribution[J]. Acta Physica Sinica, 56, 5-9(2007).

    [35] Gui M, Huang M Q, Liang L M. Continuous-variable quantum key distribution with random intensity fluctuation of the local oscillator[C]. SPIE, 10158, 1015805(2016).

    [36] Jiao H S, Wang Y B, He M et al. Research about effect of phase drift on phase-coding QKD system and intercept-resend attack[J]. Laser & Optoelectronics Progress, 52, 042703(2015).

    [37] Han B B, Pei C X. Analysis on free space quantum communication system[J]. Journal of PLA University of Science & Technology, 12, 574-576(2011).

    Tools

    Get Citation

    Copy Citation Text

    Ru Yang, Yunxia Li, Lei Shi, Wen Meng, Junwen Luo. Research Progress on Key Technologies of Free-Space Quantum Key Distributions[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: General

    Received: Jul. 7, 2017

    Accepted: --

    Published Online: Sep. 10, 2018

    The Author Email: Lei Shi (slfly2012@163.com)

    DOI:10.3788/LOP55.020003

    Topics