Laser & Optoelectronics Progress, Volume. 59, Issue 4, 0415002(2022)

Improved YOLOv3 Garbage Classification and Detection Model for Edge Computing Devices

Zipeng Wang, Rongfen Zhang*, Yuhong Liu, Jihui Huang, and Zhixu Chen
Author Affiliations
  • College of Big Data and Information Engineering, Guizhou University, Guiyang , Guizhou 550025, China
  • show less
    Figures & Tables(14)
    Structure of spatial pyramid pooling
    Improved YOLOv3 Model
    Comparison of three situations
    Training loss curve
    Comparison of detection effects of four algorithms. (a) Improved YOLOv3; (b) YOLOv3; (c) YOLOv3-Tiny; (d) YOLOv4
    Overall work flow diagram of system
    • Table 1. Network structure of Darknet53

      View table

      Table 1. Network structure of Darknet53

      TypeNumber of filtersSizeOutput
      Convolutional323×3416×416
      Convolutional643×3 /2208×208
      Convolutional321×1
      Convolutional643×3
      Residual208×208
      Convolutional1283×3/2104×104
      Convolutional641×1
      Convolutional1283×3
      Residual104×104
      Convolutional2563×3/252×52
      Convolutional1281×1
      Convolutional2563×3
      Residual52×52
      Convolutional5123×3/226×26
      Convolutional2561×1
      Convolutional5123×3
      Residual26×26
      Convolutional10243×3/213×13
      Convolutional5121×1
      Convolutional10243×3
      Residual13×13
      AvgpoolGlobal
      Connected1000
      Softmax
    • Table 2. Network structure of MobileNetv3-Large22

      View table

      Table 2. Network structure of MobileNetv3-Large22

      InputOperatorExp size#OutSENLStep
      416×416×3Conv2d16HS2
      208×208×16bneck,3×31616RE1
      208×208×16bneck,3×36424RE2
      104×104×24bneck,3×37224RE1
      104×104×24bneck,5×572400RE2
      52×52×40bneck,5×512040RE1
      52×52×40bneck,5×512040RE1
      52×52×40bneck,3×324080HS2
      26×26×80bneck,3×3200800HS1
      26×26×80bneck,3×318480HS1
      26×26×80bneck,3×318480HS1
      26×26×80bneck,3×3480112HS1
      26×26×112bneck,3×3672112HS1
      26×26×112bneck,5×5672160HS2
      13×13×160bneck,5×5960160HS1
      13×13×160bneck,5×5960160HS1
      13×13×160Conv2d,1×1960HS1
      13×13×960pool,7×71
      1×1×960Conv2d,1×1 NBN1280HS1
      1×1×1280Conv2d,1×1 NBNk1
    • Table 3. Quantity of various garbage

      View table

      Table 3. Quantity of various garbage

      Garbage categoryNumber
      Cigarette case460
      Glass bottles580
      Milk box720
      Plastic bottle810
      Screw370
      Batteries330
      Cigarette end420
      Disposable paper cup650
      Packing bag460
      Pen280
      Tissue paper ball310
      Toothpick650
      Walnut shell390
      Banana peel410
      Vegetable leaf360
      Egg shell390
      Orange peel420
      Shells of Sunflower seed410
      Tea leaves420
      Cotton swab370
      Drugs360
      Lipstick530
      Mask850
    • Table 4. Performance comparison of different networks

      View table

      Table 4. Performance comparison of different networks

      NetworkmAP /%

      Model size /

      MB

      Detection speed /(frame·s-1)
      MobileNetv368.826.176
      MobileNetv3+SPP70.927.674
      YOLOv367.2246.843
    • Table 5. Comparison before and after the introduction of CIOU function

      View table

      Table 5. Comparison before and after the introduction of CIOU function

      NetworkmAP /%
      MobileNetv3+SPP+CIOU72.1
      YOLOv3+CIOU69.3
      MobileNetv3+SPP70.9
      YOLOv367.2
    • Table 6. Comparison of AP values of four algorithms

      View table

      Table 6. Comparison of AP values of four algorithms

      Garbage categoryImproved YOLOv3YOLOv3YOLOv3-TinyYOLOv4
      Cigarette case59.5853.8542.0160.9
      Glass bottles69.8561.8454.0373.94
      Milk box70.0659.8450.1872.22
      Plastic bottle79.9879.9166.8679.97
      Screw63.9546.2737.4260.19
      Batteries76.2171.2152.5778.7
      Cigarette end74.6372.4466.3277.55
      Disposable paper cup75.5272.6467.5680.45
      Packing bag77.9570.9562.1278.35
      Pen74.4973.2860.5876.5
      Tissue paper ball73.270.155.0174.24
      Toothpick76.9874.6164.477.11
      Walnut shell57.651.5730.5360.09
      Banana peel78.8575.7566.8879.85
      Vegetable leaf66.1462.6847.4971.8
      Egg shell71.9571.5256.4972.8
      Orange peel75.3565.2563.2875.87
      Shells of Sunflower seed75.5173.8864.576.61
      Tea leaves72.6670.4357.5773.22
      Cotton swab65.9764.4763.3968.64
      Drugs75.2771.2567.5377.95
      Lipstick77.9374.6261.3378.37
      Mask68.868.3753.5369.94
    • Table 7. Comparison of overall detection performance of seven algorithms

      View table

      Table 7. Comparison of overall detection performance of seven algorithms

      NetworkmAP /%Model size /MBDetection speed /(frame·s-1
      Improved YOLOv372.127.674
      YOLOv367.2246.843
      YOLOv3-Tiny56.634.977
      YOLOv473.7256.650
      SSD65.497.348
      MobileNet+YOLOv366.825.375
      MobileNetv3+YOLOv3-Tiny55.811.782
    • Table 8. Comparison of detection speed of four algorithms on NVIDIA Xavier NX

      View table

      Table 8. Comparison of detection speed of four algorithms on NVIDIA Xavier NX

      NetworkDetection speed /(frame·s-1mAP /%
      Improved YOLOv31972.1
      YOLOv3867.2
      YOLOv3-Tiny2056.6
      YOLOv41173.7
    Tools

    Get Citation

    Copy Citation Text

    Zipeng Wang, Rongfen Zhang, Yuhong Liu, Jihui Huang, Zhixu Chen. Improved YOLOv3 Garbage Classification and Detection Model for Edge Computing Devices[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0415002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Feb. 5, 2021

    Accepted: Mar. 25, 2021

    Published Online: Jan. 25, 2022

    The Author Email: Rongfen Zhang (rfzhang@gzu.edu.cn)

    DOI:10.3788/LOP202259.0415002

    Topics