Optics and Precision Engineering, Volume. 33, Issue 12, 1971(2025)

Inversion of nearshore lake water turbidity based on photon distribution characteristics from spaceborne lidar

Heng CHEN, Rong HE*, Xiaoling WU, Shuaishuai ZHANG, and Chenchen ZHU
Author Affiliations
  • School of Surveying and Land Information Engineering ,Henan Polytechnic University, Jiaozuo454000, China
  • show less
    References(25)

    [1] CABALLERO I, STUMPF R P. Confronting turbidity, the major challenge for satellite-derived coastal bathymetry[J]. Science of the Total Environment, 870, 161898(2023).

    [2] DOGLIOTTI A I, RUDDICK K G, NECHAD B et al. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters[J]. Remote Sensing of Environment, 156, 157-168(2015).

    [3] ZHOU Q, WANG J R, TIAN L Q et al. Remotely sensed water turbidity dynamics and its potential driving factors in Wuhan, an urbanizing city of China[J]. Journal of Hydrology, 593, 125893(2021).

    [4] HOSSAIN A K M A, MATHIAS C, BLANTON R. Remote sensing of turbidity in the Tennessee River using landsat 8 satellite[J]. Remote Sensing, 13, 3785(2021).

    [5] MA Y, SONG K S, WEN Z D et al. Remote sensing of turbidity for lakes in NorthEast China using sentinel-2 images with machine learning algorithms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 9132-9146(2021).

    [6] ZHANG J W, MENG F, FU P J et al. Tracking changes in chlorophyll-a concentration and turbidity in Nansi Lake using Sentinel-2 imagery: a novel machine learning approach[J]. Ecological Informatics, 81, 102597(2024).

    [7] LU X M, HU Y X, YANG Y K. Ocean subsurface study from ICESat-2 mission[C], 17, 910-918(2019).

    [8] MARKUS T, NEUMANN T, MARTINO A et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote Sensing of Environment, 190, 260-273(2017).

    [9] DUNCANSON L, NEUENSCHWANDER A, HANCOCK S et al. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California[J]. Remote Sensing of Environment, 242, 111779(2020).

    [10] WANG Q Y, SUN W K. Seasonal cycles of high Mountain Asia glacier surface elevation detected by ICESat-2[J]. Journal of Geophysical Research: Atmospheres, 127, e2022JD037501(2022).

    [11] SONG L J, SONG C Q, LUO S X et al. Integrating ICESat-2 altimetry and machine learning to estimate the seasonal water level and storage variations of national-scale lakes in China[J]. Remote Sensing of Environment, 294, 113657(2023).

    [12] CHEN Y F, WU L, LE Y et al. High-accuracy bathymetric method fusing ICESAT-2 datasets and the two-media photogrammetry model[J]. International Journal of Applied Earth Observation and Geoinformation, 134, 104179(2024).

    [13] LIU X, ZHANG L H, DAI Z Y et al. A parameter-free denoising method for ICESat-2 point cloud under strong noise[J]. Acta Photonica Sinica, 51, 354-364(2022).

         刘翔, 张立华, 戴泽源. 一种无输入参数的强噪声背景下ICESat-2点云去噪方法[J]. 光子学报, 51, 354-364(2022).

    [14] ZHOU Z B, ZHOU H, MA Y et al. ICESat-2 lidar sea surface signal extraction and ocean wave element calculation[J]. Infrared and Laser Engineering, 52, 212-220(2023).

         周智标, 周辉, 马跃. ICESat-2激光雷达海面信号提取和海浪要素计算[J]. 红外与激光工程, 52, 212-220(2023).

    [15] 谌一夫, 李帅, 张东方. 自适应空间密度滤波的ICESat-2激光雷达测深[J]. 武汉大学学报(信息科学版), 50, 83-96(2025).

         CHEN Y F, LI S, ZHANG D F et al. ICESat-2 LiDAR bathymetry based on adaptive spatial density filtering[J]. Geomatics and Information Science of Wuhan University, 50, 83-96(2025).

    [16] EIDAM E, WALKER C, BISSON K et al. Novel application of icesat-2 atlas data to determine coastal light attenuation as a proxy for suspended particulate matter[C], 1-7(2022).

    [17] LU X M, HU Y X, OMAR A et al. Lidar attenuation coefficient in the global oceans: insights from ICESat-2 mission[J]. Optics Express, 31, 29107-29118(2023).

    [18] CORCORAN F, PARRISH C E. Diffuse attenuation coefficient (Kd) from ICESat-2 ATLAS spaceborne lidar using random-forest regression[J]. Photogrammetric Engineering & Remote Sensing, 87, 831-840(2021).

    [19] LU X M, HU Y X, YANG Y K et al. New ocean subsurface optical properties from space lidars: CALIOP/CALIPSO and ATLAS/ICESat-2[J]. Earth and Space Science, 8, e2021EA001839(2021).

    [20] WATKINS R H, SAYERS M J, SHUCHMAN R A et al. Validation of ICESat-2 derived data products on freshwater lakes: bathymetry, diffuse attenuation coefficient for downwelling irradiance (Kd), and particulate backscatter coefficient (bbp)[J]. IEEE Geoscience and Remote Sensing Letters, 20, 1501405(2023).

    [21] EIDAM E F, BISSON K, WANG C et al. ICESat-2 and ocean particulates: a roadmap for calculating K d from space-based lidar photon profiles[J]. Remote Sensing of Environment, 311, 114222(2024).

    [22] ZHANG X C, MA Y, LI Z W et al. Synergistic detection of chlorophyll-a concentration vertical profile by spaceborne lidar ICESat-2 and passive optical observations[J]. International Journal of Applied Earth Observation and Geoinformation, 132, 104035(2024).

    Tools

    Get Citation

    Copy Citation Text

    Heng CHEN, Rong HE, Xiaoling WU, Shuaishuai ZHANG, Chenchen ZHU. Inversion of nearshore lake water turbidity based on photon distribution characteristics from spaceborne lidar[J]. Optics and Precision Engineering, 2025, 33(12): 1971

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 6, 2025

    Accepted: --

    Published Online: Aug. 15, 2025

    The Author Email: Rong HE (hero@hpu.edu.cn)

    DOI:10.37188/OPE.20253312.1971

    Topics