PhotoniX, Volume. 2, Issue 1, 19(2021)
Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)
[1] [1] Mertz J. Introduction to Optical Microscopy: Cambridge University Press; 2019.
[2] [2] Rost FW, Vol. 2. Fluorescence Microscopy: Cambridge University Press; 1992.
[5] [5] Sheppard CJ, Shotton DM. Confocal Laser Scanning Microscopy; 1997.
[6] [6] Pawley J, Vol. 236. Handbook of Biological Confocal Microscopy: Springer Science & Business Media; 2006.
[9] [9] Diaspro A, et al, Vol. 1. Confocal and Two-photon Microscopy: Foundations, Applications, and Advances. New York: Wiley-Liss; 2002.
[26] [26] Zernike F. Phase contrast. Z Tech Physik. 1935; 16:454.
[29] [29] Nomarski G. Nouveau dispositif pour lobservation en contraste de phase differentiel. In: Journal de Physique et Le Radium: 1955. p. 88. EDP SCIENCES 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944...
[30] [30] Lang W. Nomarski Differential Interference-contrast Microscopy: Carl Zeiss; 1982.
[35] [35] Mir M, Bhaduri B, Wang R, Zhu R, Popescu G. Quantitative phase imaging. Prog Opt. 2012; 57(133-37):217.
[38] [38] Popescu G. Quantitative Phase Imaging of Cells and Tissues: McGraw-Hill Education; 2011.
[39] [39] Townes CH, Schawlow AL. Microwave Spectroscopy: Courier Corporation; 2013.
[46] [46] Kim MK. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010; 1(1):018005.
[62] [62] Shack RV. Production and use of a lecticular hartmann screen. J Opt Soc Am. 1971; 61:656–61.
[66] [66] Gerchberg RW. Phase determination for image and diffraction plane pictures in the electron microscope. Optik (Stuttgart). 1971; 34:275.
[67] [67] Gerchberg RW. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 1972; 35:237–46.
[74] [74] Popescu G, Wang Z. Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization.Google Patents; 2012. US Patent 8,184,298.
[90] [90] Levoy M, Ng R, Adams A, Footer M, Horowitz M. Light field microscopy. In: ACM SIGGRAPH 2006 Papers: 2006. p. 924–34.
[98] [98] Kak AC, Slaney M, Wang G. Principles of computerized tomographic imaging: Society for Industrial and Applied Mathematics; 2002.
[99] [99] Deans SR. The Radon Transform and Some of Its Applications: Courier Corporation; 2007.
[111] [111] Goodfellow I, Bengio Y, Courville A, Bengio Y, Vol. 1. Deep Learning. Cambridge: MIT press; 2016.
[124] [124] Kappeler A, Ghosh S, Holloway J, Cossairt O, Katsaggelos A. Ptychnet: Cnn based fourier ptychography. In: 2017 IEEE International Conference on Image Processing (ICIP). IEEE: 2017. p. 1712–6.
[126] [126] Li X, Qiao H, Wu J, Lu Z, Yan T, Zhang R, Zhang X, Dai Q. Deeplfm: Deep learning-based 3d reconstruction for light field microscopy. In: Novel Techniques in Microscopy. Optical Society of America: 2019. p. 3–2.
[127] [127] Wang Z, Zhang H, Yang Y, Li G, Zhu L, Li Y, He M, Zhu T, Hsiai TK, Gao S, et al. Deep learning light field microscopy for video-rate volumetric functional imaging of behaving animal. bioRxiv. 2019:432807.
[131] [131] Kolobov MI. Quantum Imaging: Springer Science & Business Media; 2007.
[134] [134] Kokhanovsky AA. Light Scattering Media Optics: Springer Science & Business Media; 2004.
[135] [135] Yang W, Li G, Situ G. Imaging through scattering media with the auxiliary of a known reference object. Sci Rep. 2018; 8(1):1–7.
[136] [136] Soifer VA, Kotlar V, Doskolovich L. Iteractive Methods For Diffractive Optical Elements Computation: CRC Press; 1997.
[157] [157] Holst GC. Ccd arrays, cameras, and displays: Citeseer; 1998.
[159] [159] Wu Q, Merchant F, Castleman K. Microscope Image Processing: Elsevier; 2010.
[161] [161] Sun J, Zuo C, Zhang J, Fan Y, Chen Q. High-speed fourier ptychographic microscopy based on programmable annular illuminations. Sci Rep. 2018; 8(1):1–12.
[169] [169] Zhang J, Sun J, Chen Q, Li J, Zuo C. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy. Sci Rep. 2017; 7(1):1–15.
[171] [171] Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy. Methods Gen Mol Microbiol. 2007:19–33.
[177] [177] Wu Y, Zhang Y, Luo W, Ozcan A. Demosaiced pixel super-resolution for multiplexed holographic color imaging. Sci Rep. 2016; 6(1):1–9.
[199] [199] Tai C, Xiao T, Zhang Y, Wang X, et al. Convolutional neural networks with low-rank regularization. arXiv preprint arXiv:1511.06067. 2015.
[200] [200] Kellman M, Bostan E, Chen M, Waller L. Data-driven design for fourier ptychographic microscopy. In: 2019 IEEE International Conference on Computational Photography (ICCP). IEEE: 2019. p. 1–8.
[219] [219] Rheinberg J. On an addition to the methods of microscopical research, by a new way optically producing color-contrast between an object and its background, or between definite parts of the object itself. Jpn Soc Electron Microsc. 1896; 16:373–88.
[250] [250] Bertero M, Boccacci P. Introduction to Inverse Problems in Imaging: CRC press; 2020.
[269] [269] Fox GC, Williams RD, Messina GC. Parallel Computing Works!: Elsevier; 2014.
[270] [270] Attiya H, Welch J. Distributed Computing: Fundamentals, Simulations, and Advanced Topics vol. 19: Wiley; 2004.
Get Citation
Copy Citation Text
Yao Fan, Jiaji Li, Linpeng Lu, Jiasong Sun, Yan Hu, Jialin Zhang, Zhuoshi Li, Qian Shen, Bowen Wang, Runnan Zhang, Qian Chen, Chao Zuo. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)[J]. PhotoniX, 2021, 2(1): 19
Category: Research Articles
Received: Jun. 6, 2021
Accepted: Jul. 22, 2021
Published Online: Jul. 10, 2023
The Author Email: Qian Chen (chenqian@njust.edu.cn), Chao Zuo (zuochao@njust.edu.cn)