Chinese Journal of Lasers, Volume. 47, Issue 12, 1204005(2020)

Three-Dimensional Measurement Method of Light Field Imaging Based on Deep Learning

Wu Junlong1,2,3, Guo Zhenghua1,2,3, Chen Xianfeng1,2,3, Ma Shuai1,2,3, Yan Xu1,2,3, Zhu Licheng1,2,3, Wang Shuai1,3, and Yang Ping1,3、*
Author Affiliations
  • 1Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(13)
    Projection model of light field camera
    Relationship between disparity and depth
    Illustration of equivalent baselines
    Structure of network
    Illustration of network input
    Center view and GT disparity of synthetic datasets
    Test results of synthetic dataset
    Test results of real dataset
    Three-dimensional reconstruction results of test scene
    Measurement of real scene scale. (a) Test scene; (b) disparity map; (c) three-dimensional reconstruction structure
    • Table 1. Badpixel(0.07) comparison of different algorithms

      View table

      Table 1. Badpixel(0.07) comparison of different algorithms

      SceneLF_OCCEPI2LFFocalStackNetEPInetProposed
      Boxes26.5229.8023.0214.3312.2411.46
      Cotton6.2216.697.830.580.460.51
      Dino14.9115.6719.032.531.261.14
      Sideboard18.5018.9521.995.404.784.56
      Backgammon19.0122.085.524.343.281.87
      Pyramids3.171.0812.350.290.150.28
      Dots5.8246.532.901.021.983.49
      Stripes18.4123.8135.743.720.910.85
    • Table 2. MSE comparison of different algorithms

      View table

      Table 2. MSE comparison of different algorithms

      SceneLF_OCCEPI2LFFocalStackNetEPInetProposed
      Boxes9.8510.9317.4311.826.014.81
      Cotton1.074.329.170.880.220.23
      Dino1.142.071.160.890.150.15
      Sideboard2.304.655.071.960.810.59
      Backgammon21.5920.7813.016.583.912.39
      Pyramids0.100.020.270.020.0070.01
      Dots3.306.665.681.871.984.29
      Stripes8.136.1017.451.790.910.85
    • Table 3. Runtime comparison of different algorithms unit: s

      View table

      Table 3. Runtime comparison of different algorithms unit: s

      SceneLF_OCCEPI2LFFocalStackNetEPInetProposed
      Boxes10408.268.91962.1885.042.031.03
      Cotton6325.519.07984.5384.902.031.04
      Dino10099.058.091130.5685.622.031.07
      Sideboard13531.308.74987.4784.772.021.11
      Backgammon5116.256.93979.8784.242.021.04
      Pyramids11688.426.88929.7292.092.021.04
      Dots10820.857.66979.8781.562.031.08
      Stripes19331.428.531093.9891.922.031.07
    Tools

    Get Citation

    Copy Citation Text

    Wu Junlong, Guo Zhenghua, Chen Xianfeng, Ma Shuai, Yan Xu, Zhu Licheng, Wang Shuai, Yang Ping. Three-Dimensional Measurement Method of Light Field Imaging Based on Deep Learning[J]. Chinese Journal of Lasers, 2020, 47(12): 1204005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Measurement and metrology

    Received: Jun. 9, 2020

    Accepted: --

    Published Online: Nov. 18, 2020

    The Author Email: Ping Yang (pingyang2516@163.com)

    DOI:10.3788/CJL202047.1204005

    Topics