Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1037005(2024)

Cardiac Image Segmentation by Combining Frequency Domain Prior and Feature Enhancement

Keyan Chen1, Qiaohong Liu2、*, Xiaoxiang Han1, Yuanjie Lin1, and Weikun Zhang1
Author Affiliations
  • 1School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
  • show less
    Figures & Tables(16)
    DNet model structure
    Upsampling process. (a) Before sampling; (b) after sampling
    Local self-attention block
    Global self-attention block
    Prior guidance information extraction process
    Comparison of segmentation results
    Feature heatmaps before and after fusion
    Feature heatmaps before and after fusion
    • Table 1. Comparison of segmentation effects of different methods on ACDC dataset

      View table

      Table 1. Comparison of segmentation effects of different methods on ACDC dataset

      MethodmDicemJCmASDmHD
      AverageMYORVLV
      FCN87.6586.5783.5192.870.780.593.06
      U-Net88.3185.9785.0393.940.790.562.84
      TransUNet89.5686.4287.5494.710.810.542.79
      Swin-UNet87.5682.9785.6994.030.790.421.92
      DNet91.3689.0789.3795.640.840.341.62
    • Table 2. Comparison of segmentation effects of different prior guided strategies

      View table

      Table 2. Comparison of segmentation effects of different prior guided strategies

      StrategymDicemJCmASDmHD
      Canny86.700.783.5425.43
      Sobel89.400.820.482.42
      Fourier91.360.840.341.62
    • Table 3. Comparison of segmentation effects of different feature fusion enhancement strategies

      View table

      Table 3. Comparison of segmentation effects of different feature fusion enhancement strategies

      StrategymDicemJCmASDmHD
      U-Net++89.430.810.442.33
      RefineNet90.190.830.543.26
      DNet91.360.840.341.62
    • Table 4. Results of ablation experiments

      View table

      Table 4. Results of ablation experiments

      MethodmDicemJCmASDmHD
      DNet-PGN-FFEB89.790.820.622.51
      DNet-PGN90.310.820.482.54
      DNet-FFEB90.050.830.552.20
      DNet91.360.840.341.62
    • Table 5. Results of prior feature concatenation

      View table

      Table 5. Results of prior feature concatenation

      MethodmDicemJCmASDmHD
      not concatenated87.410.780.532.63
      concatenated91.360.840.341.62
    • Table 6. Results of using local and global attention individually and in combination

      View table

      Table 6. Results of using local and global attention individually and in combination

      MethodmDicemJCmASDmHD
      local attention90.160.830.432.17
      global attention88.380.801.105.49
      both91.360.840.341.62
    • Table 7. Results of using different mask shapes

      View table

      Table 7. Results of using different mask shapes

      ShapemDicemJCmASDmHD
      round91.360.840.341.62
      square90.890.830.301.23
    • Table 8. Results of different mask radii

      View table

      Table 8. Results of different mask radii

      RadiusmDicemJCmASDmHD
      2090.070.830.382.07
      3091.360.840.341.62
      4090.470.830.341.39
    Tools

    Get Citation

    Copy Citation Text

    Keyan Chen, Qiaohong Liu, Xiaoxiang Han, Yuanjie Lin, Weikun Zhang. Cardiac Image Segmentation by Combining Frequency Domain Prior and Feature Enhancement[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1037005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jul. 31, 2023

    Accepted: Oct. 25, 2023

    Published Online: Apr. 29, 2024

    The Author Email: Qiaohong Liu (hqllqh@163.com)

    DOI:10.3788/LOP231800

    CSTR:32186.14.LOP231800

    Topics