Journal of Quantum Optics, Volume. 28, Issue 2, 131(2022)
Generation of Quadripartite Entanglement from Four-Wave Mixing Processes
[1] [1] EINSTEIN A, PODOLSKY B, ROSEN N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[J]. Phys Rev, 1935, 47(10): 777-780. DOI: 10.1103/PhysRev.47.777.
[2] [2] ASPECT A, DALIBARD J, ROGER G. Experimental test of Bell’s inequalities using time-varying analyzers[J]. Phys Rev Lett, 1982, 49(25): 1804-1807. DOI: 10.1103/PhysRevLett.49.1804.
[3] [3] GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Rev Mod Phys, 2002, 74(1): 145-195. DOI: 10.1103/RevModPhys.74.145.
[4] [4] PIRANDOLA S, EISERT J, WEEDBROOK C, et al. Advances in quantum teleportation[J]. Nat Photonics, 2015, 9(10): 641-652. DOI: 10.1038/nphoton.2015.154.
[5] [5] ALDERETE C H, SINGH S, NGUYEN N H, et al. Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer[J]. Nat Commun, 2020, 11(1): 3720. DOI: 10.1038/s41467-020-17519-4.
[6] [6] LIU S, LOU Y, XIN J, et al. Quantum Enhancement of Phase Sensitivity for the Bright-Seeded SU(1,1) Interferometer with Direct Intensity Detection[J]. Phys Rev Applied, 2018, 10(6): 064046. DOI: 10.1103/PhysRevApplied.10.064046.
[7] [7] GUO X, CASPER R B, JOHANNES B, et al. Distributed quantum sensing in a continuous-variable entangled network[J]. Nat Phys, 2020, 16(3): 281-284. DOI: 10.1038/s41567-019-0743-x.
[8] [8] YONEZAWA H, AOKI T, FURUSAWA A. Demonstration of a quantum teleportation network for continuous variables[J]. Nature, 2020, 431(7007): 430-433. DOI: 10.1038/nature02858.
[9] [9] CHEN Y, LIU S, LOU Y, et al. Orbital Angular Momentum Multiplexed Quantum Dense Coding[J]. Phys Rev Lett, 2021, 127(9): 093601. DOI: 10.1103/PhysRevLett.127.093601.
[10] [10] LIU S, LOU Y, CHEN Y, et al. All-Optical Optimal N-to-M Quantum Cloning of Coherent States[J]. Phys Rev Lett, 2021, 126(6): 060503. DOI: 10.1103/PhysRevLett.126.060503.
[11] [11] UKAI R, IWATA N, SHIMOKAWA Y, et al. Demonstration of Unconditional One-Way Quantum Computations for Continuous Variables[J]. Phys Rev Lett, 2011, 106(24): 240504. DOI: 10.1103/PhysRevLett.106.240504.
[12] [12] LARSEN M V, GUO X, BREUM C R, et al. Deterministic multi-mode gates on a scalable photonic quantum computing platform[J]. Nat Phys, 2021, 17(9): 1-6. DOI: 10.1038/s41567-021-01296-y.
[13] [13] GE W, KURT J, ZACHARY E, et al. Distributed Quantum Metrology with Linear Networks and Separable Inputs[J]. Phys Rev Lett, 2018, 121(4): 043604. DOI: 10.1103/PhysRevLett.121.043604.
[14] [14] OU Z Y, PEREIRA S F, KIMBLE H J. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Phys Rev Lett, 1992, 68(25): 3663-3666. DOI: 10.1103/PhysRevLett.68.3663.
[15] [15] JING J, ZHANG J, YAN Y, et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables[J]. Phys Rev Lett, 2003, 90(16): 167903. DOI: 10.1103/PhysRevLett.90.167903.
[16] [16] YUKAWA M, UKAI R, LOOCK P V, et al. Experimental generation of four-mode continuous-variable cluster states[J]. Phys Rev A, 2008, 78(1): 012301. DOI: 10.1103/PhysRevA.78.012301.
[17] [17] SU X, TAN A, JIA X, et al. Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables[J]. Phys Rev Lett, 2007, 98(7): 070502. DOI: 10.1103/PhysRevLett.98.070502.
[18] [18] ROSLUND J, DE ARAUJO R M, JIANG S, et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs[J]. Nat Photonics, 2014, 8(2): 109-112. DOI: 10.1038/nphoton.2013.340.
[19] [19] PAN X, YU S, ZHOU Y, et al. Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor[J]. Phys Rev Lett, 2019, 123(7): 070506. DOI: 10.1103/PhysRevLett.123. 070506.
[20] [20] BOYER V, MARINO A M, POOSER R C, et al. Entangled images from four-wave mixing[J]. Science, 2008, 321(5888): 544-547. DOI: 10.1126/science.1158275.
[21] [21] CAMACHO R M, VUDYASETU P K, HOWELL J C. Four-wave-mixing stopped light in hot atomic rubidium vapour[J]. Nat Photonics, 2009, 3(2): 103-106. DOI: 10.1038/nphoton.2008.290.
[22] [22] MACRAE A, BRANNAN T, ACHAL R, et al. Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation[J]. Phys Rev Lett, 2012, 109(3): 033601. DOI: 10.1103/PhysRevLett.109.033601.
[23] [23] MARINO A M, POOSER R C, Boyer V, et al. Tunable delay of Einstein-Podolsky-Rosen entanglement[J]. Nature, 2009, 457(7231): 859-862. DOI: 10.1038/nature07751.
[24] [24] XIN J, WANG H, JING J. The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer[J]. Appl Phys Lett, 2016, 109(5): 051107. DOI: 10.1063/1.4960585.
[25] [25] SWAIM J D, KNUTSON E M, DANACI O, et al. Multimode four-wave mixing with a spatially structured pump[J]. Opt Lett, 2018, 43(11): 2716-2719. DOI: 10.1364/ol.43.002716.
[26] [26] KNUTSON E M, SWAIM J D, WYLLIE S, et al. Optimal mode configuration for multiple phase-matched four-wave-mixing processes[J]. Phys Rev A, 2018, 98(1): 013828. DOI: 10.1103/PhysRevA.98.013828.
[27] [27] JIA J, DU W, CHEN J F, et al. Generation of frequency degenerate twin beams in Rb-85 vapor[J]. Opt Lett, 2017, 42(19): 4024-4027. DOI: 10.1364/ol.42.004024.
[28] [28] WANG H, FABRE C, JING J. Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump[J]. Phys Rev A, 2017, 95(5): 051802. DOI: 10.1103/PhysRevA.95.051802.
[29] [29] LI S, PAN X, REN Y, et al. Deterministic Generation of Orbital-Angular-Momentum Multiplexed Tripartite Entanglement[J]. Phys Rev Lett, 2020, 124(8): 083605. DOI: 10.1103/PhysRevLett.124.083605.
[30] [30] WANG W, ZHANG K, JING J. Large-Scale Quantum Network over 66 Orbital Angular Momentum Optical Modes[J]. Phys Rev Lett, 2020, 125(14): 140501. DOI: 10.1103/PhysRevLett.125.140501.
[31] [31] ZHANG K, WANG W, LIU S, et al. Reconfigurable Hexapartite Entanglement by Spatially Multiplexed Four-Wave Mixing Processes[J]. Phys Rev Lett, 2020, 124(9): 090501. DOI: 10.1103/PhysRevLett.124.090501.
[32] [32] SIMON R. Peres-Horodecki separability criterion for continuous variable systems[J]. Phys Rev Lett, 2000, 84(12): 2726-2729. DOI: 10.1103/PhysRevLett.84.2726.
[33] [33] WERNER R F, WOLF M M. Bound entangled Gaussian states[J]. Phys Rev Lett, 2001, 86(16): 3658-3661. DOI: 10.1103/PhysRevLett.86.3658.
[34] [34] CAI Y, FENG J, WANG H, et al. Quantum-network generation based on four-wave mixing[J]. Phys Rev A, 2015, 91(1): 013843. DOI: 10.1103/PhysRevA.91.013843.
[35] [35] VOGL U, GLASSER R T, CLARK J B, et al. Advanced quantum noise correlations[J]. New J Phys, 2014, 16(1): 013011. DOI: 10.1088/1367-2630/16/1/013011.
[36] [36] LIU S, LOU Y, JING J. Interference-Induced Quantum Squeezing Enhancement in a Two-beam Phase-Sensitive Amplifier[J]. Phys Rev Lett, 2019, 123(11): 113602. DOI: 10.1103/PhysRevLett.123.113602.
Get Citation
Copy Citation Text
SONG Ting-ting, ZHOU Yan-fen, ZHANG Kai, JING Jie-tai. Generation of Quadripartite Entanglement from Four-Wave Mixing Processes[J]. Journal of Quantum Optics, 2022, 28(2): 131
Category:
Received: Feb. 10, 2022
Accepted: --
Published Online: Oct. 14, 2022
The Author Email: SONG Ting-ting (3301846290@qq.com)