Journal of Quantum Optics, Volume. 28, Issue 2, 170(2022)
Research on Dual Tunable Broadband Metamaterial Absorber Based on Graphene and Vanadium Dioxide
[1] [1] YILDIRIM O, OZKAN V A, DIKUT F, et al.Characterization of a terahertz wave scanned imaging system for threat detection at standoff distances[J]. Opt Quant Electron, 2016, 48(7): 367. DOI: https://doi.org/10.1007/s11082-016-0631-x.
[2] [2] JEPSEN P U, COOKE D G, KOCH M. Terahertz spectroscopy and imaging-modern techniques and applications[J]. Laser Photon Rev, 2011, 5(1): 124-166. DOI: https://doi.org/10.1002/lpor.201000011.
[3] [3] STANTCHEV R I, PHILLIPS D B, HOBSON P, et al. Compressed sensing with near-field THz radiation[J]. Optica, 2017, 4(8): 989-992. DOI: https://doi.org/10.1364/OPTICA.4.000989.
[4] [4] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Phys Rev Lett, 2008, 100(20): 207402. DOI: https://doi.org/10.1103/PhysRevLett.100.207402.
[5] [5] ZHU W R, HUANG Y J, RUKHLENKO I D, et al. Configurable metamaterial absorber with pseudo wideband spectrum[J]. Opt Express, 2012, 20(6): 6616-6621. DOI: https://doi.org/ 10.1364/OE.20.006616.
[6] [6] GAO Y X, SHADRIVOV I V. Second harmonic generation in graphene-coated nanowires[J]. Opt Lett, 2016, 41(15): 3623-3626. DOI: https://doi.org/ 10.1364/OL.41.003623.
[7] [7] GUO W L, LIU Y X, HAN T C. Ultra-broadband infrared metasurface absorber[J]. Opt Express, 2016, 24(18): 20586-20592. DOI: https://doi.org/10.1364/OE.24.020586.
[8] [8] BONACCORSO F, SUN Z R, HASAN T, et al. Graphene photonics and optoelectronics[J]. Nat Photon, 2010, 4(9): 611-622. DOI: https://doi.org/10.1038/nphoton.2010.186.
[9] [9] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI: https://doi.org/ 10.1126/science.1102896.
[10] [10] QI L M, LIU C, SHAH S M A. A broad dual-band switchable graphene-based terahertz metamaterial absorber[J]. Carbon, 2019, 153: 179-188. DOI: https://doi.org/10.1016/j.carbon.2019.07.011.
[11] [11] LIU L, LIU W W, SONG Z S. Ultra-broadband terahertz absorber based on a multilayer graphene metamaterial[J]. J Appl Phys, 2020, 128: 093104. DOI: https://doi.org/10.1063/5.0019902.
[12] [12] XING L Y, CUI H L, ZHOU Z X, et al. Terahertz scattering and spectroscopic characteristics of polymethacryl imide microstructures[J]. IEEE Access, 2019, 7: 41737-41745. DOI: https://doi.org/ 10.1109/ACCESS.2019.2906752.
[13] [13] BAI J J, ZHANG S S, FAN F, et al. Tunable broadband THz absorber using vanadium dioxide metamaterials[J]. Opt Commun, 2019, 452: 292-295. DOI: https://doi.org/10.1016/j.optcom.2019.07.057.
[14] [14] LIU H W, LU J P, WANG X R. Metamaterials based on the phase transition of VO2[J]. Nanotechnology, 2018, 29(2): 024002. DOI: https://doi.org/10.1088/1361-6528/aa9cb1.
[15] [15] ZHANG Y X, QIAO S, SUN L L, et al. Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method[J]. Opt Express, 2014, 22(9): 11070-11078. DOI: https://doi.org/10.1364/OE.22.011070.
[16] [16] WANG S X, CAI C F, YOU M H, et al. Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study[J]. Opt Express, 2019, 27: 19436-19447. DOI: https://doi.org/10.1364/OE.27.019436.
[17] [17] SONG Z Y, WANG K, LI J W, et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials[J]. Opt Express, 2018, 26: 7148-7154. DOI: https://doi.org/10.1364/OE.26.007148.
[18] [18] SONG Z Y, JIANG M W, DENG Y D, et al. Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material[J]. Opt Commun, 2020, 464: 125494. DOI: https://doi.org/10.1016/j.optcom.2020.125494.
[19] [19] KOCER H, BUTUN S, BABAR B, et al. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures[J]. Appl Phys Lett, 2015, 106(16): 161104. DOI: http://dx.doi.org/10.1063/1.4918938.
[20] [20] HUANG X, YANG F, GAO B, et al. Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime[J]. Opt Express, 2019, 27(18): 25902-25911. DOI: https://doi.org/10.1364/OE.27.025902.
[21] [21] WU J L, YAN X, YUAN X G, et al. A dual-tunable ultra-broadband terahertz absorber based on graphene and strontium titanate[J]. Result Phys, 2021, 31: 105039. DOI: https://doi.org/10.1016/j.rinp.2021.105039.
[22] [22] YE L F, CHEN X E, ZHU C H, et al. Switchable broadband terahertz spatial modulators based on patterned graphene and vanadium dioxide[J]. Opt Express, 2020, 28(23): 33948-33958. DOI: https://doi.org/10.1364/OE.406090.
[23] [23] ZHOU R H, JIANG T T, PENG Z, et al. Tunable broadband terahertz absorber based on graphene metamaterials and VO2[J]. Opt Mater, 2021, 114: 110915. DOI: https://doi.org/10.1016/j.optmat.2021.110915.
[24] [24] ZHANG M, SONG Z Y. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide- spacer-metal configuration[J]. Opt Express, 2020, 28(8): 11780-11788. DOI: https://doi.org/10.1364/OE.391891.
[25] [25] RAAD S H, ATLASBAF Z. Bi-functional tunable reflector/high-Q absorber design using VO2 assisted graphene-coated cylinder array[J]. Opt Express, 2021, 29(11): 17510-17521. DOI: https://doi.org/10.1364/OE.423129.
[26] [26] LIU M, KANG W J, ZHANG Y L, et al. Dynamically controlled terahertz coherent absorber engineered with VO2-integrated Dirac semimetal metamaterials[J]. Opt Commum, 2022, 503: 1227443. DOI: https://doi.org/10.1016/j.optcom.2021.127443.
[27] [27] LIU Y, HUANG R, OUYANG Z B. Numerical Investigation of Graphene and STO Based Tunable Terahertz Absorber with Switchable Bifunctionality of Broadband and Narrowband Absorption[J]. Nanomaterials, 2021, 11(8): 2044. DOI: https://doi.org/10.3390/nano11082044.
[28] [28] YE L F, CHEN Y, CAI G X, et al. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range[J]. Opt Express, 2017, 25(10): 11223-11232. https://doi.org/10.1364/OE.25.011223.
[29] [29] YE L F, CHEN X, CAI G X, et al. Electrically tunable broadband terahertz absorption with hybrid-patterned graphene metasurfaces[J]. Nanomaterials, 2018, 8(8): 562. DOI: https://doi.org/10.3390/nano8080562.
[30] [30] JO G, CHOE M, CHO C Y, et al. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes[J]. Nanotechnology, 2010, 21(17): 175201. DOI: https://doi.org/10.1088/0957-4484/21/17/175201.
[31] [31] FANG Z Y, WANG Y M, SCHLATHER A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Lett, 2014, 14(1): 299-304. DOI: https://doi.org/10.1021/nl404042h.
[32] [32] ZHUO Q Q, WANG Q, ZHANG Y P, et al. Transfer-free synthesis of doped and patterned graphene films[J]. ACS Nano, 2015, 9(1): 594-601. DOI: https://doi.org/ 10.1021/nn505913v.
[33] [33] WANG L Z, ZHANG J, LIU N, et al. Fast patterned graphene ribbons via soft-lithography[J]. Procedia CIRP, 2016, 42: 428-432. DOI: https://doi.org/10.1016/j.procir.2016.02.226.
[34] [34] HANSON G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene[J]. J Appl Phys, 2008, 103(6): 064302. DOI: https://doi.org/10.1063/1.2891452.
[35] [35] VAKIL A, ENGHETA N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294. DOI: https://doi.org/ 10.1126/science.1202691.
[36] [36] ZENG F, YE L F, LI L, et al. Tunable mid-infrared dual-band and broadband cross-polarization converters based on U-shaped graphene metamaterials[J]. Opt Express, 2019, 27(23): 33826-33839. DOI: https://doi.org/10.1364/OE.27.033826.
[37] [37] LIU H, WANG Z H, LI L, et al. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber[J]. Sci Rep, 2019, 9(1): 5751. DOI: https://doi.org/10.1038/s41598-019-42293-9.
[38] [38] WANG S X, KANG L, WERNER D H. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2)[J]. Sci Rep, 2017, 7(1): 4326. DOI: https://doi.org/10.1038/s41598-017-04692-8.
[39] [39] LIU Y, HUANG R, OUYANG Z B. Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene[J]. Opt Express, 2021, 29(13): 20839. DOI: https://doi.org/10.1364/OE.428790.
[40] [40] ZHU H L, ZHANG Y, YE L F, et al. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption[J]. Opt Express, 2020, 28(26): 38626. DOI: https://doi.org/10.1364/OE.414039.
[41] [41] GOLDFLAM, M D, LIU M K, CHAPLER B C, et al. Voltage switching of a VO2 memory metasurface using ionic gel[J]. Appl Phys Lett, 2014, 105: 041117. DOI: https://dx.doi.org/10.1063/1.4891765.
[42] [42] CHEN S, WANG X J, FAN L L, et al. The dynamic phase transition modulation of ion-liquid gating VO2 thin film: formation, diffusion, and recovery of oxygen vacancies[J]. Adv Funct Mater, 2016, 26: 3532-3541. DOI: https://dx.doi.org/10.1002/adfm.201505399.
[43] [43] LIU L, LEI K, THERES S M, DOUGLAS H W. Hybrid metamaterials for electrically triggered multifunctional control[J]. Nat Commun, 2016, 7: 13236. DOI: https://dx.doi.org/10.1038/ncomms13236.
Get Citation
Copy Citation Text
LV Yi-song, TIAN Jin-ping, YANG Rong-cao. Research on Dual Tunable Broadband Metamaterial Absorber Based on Graphene and Vanadium Dioxide[J]. Journal of Quantum Optics, 2022, 28(2): 170
Category:
Received: Oct. 8, 2021
Accepted: --
Published Online: Oct. 14, 2022
The Author Email: TIAN Jin-ping (tianjp@sxu.edu.cn)