Journal of Inorganic Materials, Volume. 34, Issue 2, 130(2019)

Green Preparation and Supercapacitive Performance of NiCo2S4@ACF Heterogeneous Electrode Materials

Shi-Huai ZHAO1,2, Zi-Bo YANG2, Xiao-Ming ZHAO1,3, Wen-Wen XU2, Xin WEN2, Qing-Yin ZHANG1,2, [in Chinese]1,2, [in Chinese]2, [in Chinese]1,3, [in Chinese]2, [in Chinese]2, and [in Chinese]1,2
Author Affiliations
  • 11. State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Polytechnic University, Tianjin 300387, China
  • 22. School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
  • 33. School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China
  • show less
    References(28)

    [1] JI X B, WU Z P, ZHU Y R. Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties.[D]. Journal of Power Sources, 267, 888-900(2014).

    [2] LIU X H, WEN Z B, WU D B. Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors.[D]. Journal of Materials Chemistry A, 2, 11569-11573(2014).

    [3] CAO L J, LI Y H, QIAO L. Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors[D]. J. Mater. Chem. A, 2, 6540-6548(2014).

    [4] CARLEN M, KOTZ R. Principles and applications of electrochemical capacitors[D]. Electrochimica Acta, 45, 2483-2498(2000).

    [5] REN W C, WANG D W, WU Z S. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors[D]. Advanced Functional Materials, 20, 3595-3602(2010).

    [6] HU J G, YANG Q, YE X D. Preparation and properties of NiO/AC asymmetric capacitor[D]. Journal of Inorganic Materials, 29, 250-256(2014).

    [7] GAO B, ZHANG L J, ZHANG X G. Pyrolysis preparation of nickel oxide and its electrochemical capacitance[D]. Journal of Inorganic Materials, 26, 398-402(2011).

    [8] SAMO M, TROISI A. Supercapacitors based on high surface area MoS2 and MoS2-Fe3O4 nanostructures supported on physical exfoliated graphite[D]. Journal of Nanoscience and Nanotechnology, 17, 3735-3743(2017).

    [9] CHANG Y H, HAN G Y, XIAO Y M. Internal tandem flexible and compressible electrochemical capacitor based on polypyrrole/ carbon fibers[D]. Electrochimica Acta, 257, 335-344(2017).

    [10] MAIER M A, SAMPAIO D M, SURESH BABU R. Binder- free polyaniline interconnected metal hexacyanoferrates nanocomposites (metal = Ni, Co) on carbon fibers for flexible supercapacitors[D]. Journal of Materials Science: Materials in Electronics, 28, 17405-17413(2017).

    [11] MA Y H, PANG H, WEI C Z. Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors[D]. ChemPlusChem, 78, 546-553(2013).

    [12] LIU X B, WU Z P, YIN Y H. Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors[D]. Chemical Engineering Journal, 323, 330-339(2017).

    [13] GU Z X, HU Q Q, ZHENG X T. Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances[D]. Chemical Engineering Journal, 304, 223-231(2016).

    [14] XU J, ZHANG Y, ZHENG Y Y. NiCo2S4@NiMoO4 core-shell heterostructure nanotube arrays grown on Ni foam as a binder-free electrode displayed high electrochemical performance with high capacity[D]. Nanoscale Res. Lett., 12, 412-420(2017).

    [15] WEN J Q, YAN M L, YAO Y D. Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor[D]. ACS Appl. Mater. Interfaces, 8, 24525-24535(2016).

    [16] JI X B, WU Z B, ZHU Y R. NiCo2S4 hollow microsphere decorated by acetylene black for high-performance asymmetric supercapacitor.[D]. Electrochimica Acta, 186, 562-571(2015).

    [17] SHEN L F, WANG J, XU G Y. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors[D]. Advanced Energy Materials, 5(2015).

    [18] GONG Y N, LI D L, PAN C X. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors[D]. Sci. Rep., 6, 29788-29794(2016).

    [19] KONG L B, MA X J, ZHANG W B. Design and synthesis of 3D Co3O4@MMoO4(M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes[D]. Electrochimica Acta, 130, 660-669(2014).

    [20] JIANG J J, WAN H Z, YU J W. NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors[D]. CrystEngComm, 15, 7649-7651(2013).

    [21] , HE X Y, LI R M. Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors.[D]. Chemical Engineering Journal, 334, 1573-1583(2018).

    [22] CHEN Y M, HE Z N, ZHANG G X. Surfactant dependence of nanostructured NiCo2S4 films on Ni foam for superior electrochemical performance[D]. Journal of Inorganic Materials, 33, 289-294(2018).

    [23] GONG H, TANG Z, TANG C H. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes[D]. Advanced Functional Materials, 22, 1272-1278(2012).

    [24] CHEN R N, LIU L, ZHOU J S. High-performance nickel- cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density.[D]. Journal of Power Sources, 341, 75-82(2017).

    [25] KIM H Y, PARK M, ZHANG Y F. Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density[D]. J. Colloid Interface Sci., 500, 155-163(2017).

    [26] , HOU L R, HUA H. Anion-exchange formation of hollow NiCo2S4 nanoboxes from mesocrystalline nickel cobalt carbonate nanocubes towards enhanced pseudocapacitive properties.[D]. ChemPlusChem, 81, 557-563(2016).

    [27] FENG Y, YUAN X H, ZHENG C. Core-shell structure ultrathin NiCo2S4@graphene as high performance positive electrode for hybrid supercapacitors[D]. Journal of Materials Chemistry A, 6, 5856-5861(2018).

    [28] LI G F, WANG F P, ZHOU Q Q. One-step hydrothermal synthesis of sandwich-type NiCo2S4 @reduced graphene oxide composite as active electrode material for supercapacitors[D]. Applied Surface Science, 425, 180-187(2017).

    Tools

    Get Citation

    Copy Citation Text

    Shi-Huai ZHAO, Zi-Bo YANG, Xiao-Ming ZHAO, Wen-Wen XU, Xin WEN, Qing-Yin ZHANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Green Preparation and Supercapacitive Performance of NiCo2S4@ACF Heterogeneous Electrode Materials[J]. Journal of Inorganic Materials, 2019, 34(2): 130

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 10, 2018

    Accepted: --

    Published Online: Sep. 24, 2021

    The Author Email:

    DOI:10.15541/jim20180158

    Topics