Chinese Journal of Lasers, Volume. 51, Issue 11, 1101025(2024)

Research Progress in Nonlinear Optics and Ultrafast Dynamics of Two‑Dimensional Materials

Yan Wang1,2, Ningning Dong1,2、*, and Jun Wang1,2
Author Affiliations
  • 1Aerospace Laser Technology and Systems Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(12)
    Structure diagram of article
    Schematics of sample preparation. (a) Gold-assisted mechanical exfoliation of two-dimensional materials[1]; (b) preparation process by sonication-assisted liquid-phase exfoliation[2]; (c) schematics of CVD device and main growth process[3]; (d) epitaxial growth of uniform monolayer MoS2 single crystal on sapphire[4]; (e) bilayer MoS2 grown by CVD method has different stacking methods (scale of 100 μm)[5]; (f) optical images (scale of 20 μm) and atomic resolution STEM-ADF images (scale of 5 nm) of tetragonal (left) and hexagonal (right) FeTe nanosheets[6]
    Schematics of experimental system for studying NLO characteristics and ultrafast carrier dynamics. (a) Z-scan system[20]; (b) μ-Z/I-scan system[21]; (c) reflective SHG test system[22]; (d) degenerate pump detection system[23]
    NLO properties of graphene and its composites. (a) Nonlinear transmissivity of three graphene absorbers versus input laser intensity under action of 1030 nm femtosecond laser[24]; (b) normalized transmissivity and ratio of non-linear extinction cross-section to linear extinction cross-section versus incident intensity for graphene dispersions[25]; (c) relationship between relative change of local nonlinear refractive index of graphene NMP dispersion and incident light intensity under action of 633 nm laser[26]; (d) energy level diagram of GZO nanocomposites[27]; (e) Z-scan results of graphene and its CuO nanocomposites under action of 1030 nm laser[28]; (f) nonlinear transmissivity (solid symbol) and scattering (hollow symbol) of GO-PcZn, GO dispersion and PCZn solution at 532 nm[29]
    NLO characteristics of Xene. (a) Relationship between normalized differential absorptivity of BP and pulse fluence[37]; (b) modulation depths of BP dispersions under different pump fluences[38]; (c) normalized transmissivity of PMMA-based films versus input laser intensity at 532 nm[39]; (d) competition mechanisms between SA and NLS under excitations of weak pump, medium pump, and strong pump[38]; (e) 2D SHG mapping of Te nanosheet[40]; (f) SHG spectra of Te nanosheet under different excitation wavelengths[40]; (g) polarization angle dependence of SHG intensity[40]
    NLO characteristics of MoX2 and WX2 (X=S, Se, Te). (a) Schematics of S vacancy defect levels within MoS2 bandgaps, resulting in SA[50]; (b) high harmonic spectrum measured from monolayer MoS2[51]; (c) optical modulation depths of MoS2, MoSe2, and graphene dispersions under different pump fluences with 632.8 nm CW probe light[52]; normalized transmissivity (solid circles) and scattering response (hollow circles) of different nanosheet dispersions at (d) 1064 nm and (e) 532 nm[53]
    NLO characteristics of two-dimensional metal sulfides. (a) Schematic of surface and inner bulk recombination of 2D PtS[59]; (b) ultrafast carrier dynamic of PtS thin films with thickness of 14.1 nm[59]; (c) open-aperture Z-scan results of 4, 7, 17, and 55 layer PtSe2 films under 1030 nm femtosecond pulse excitation[60]; (d) carrier relaxation processes of InSe dispersions with different pump intensities[61]; (e) schematics of recombination processes of InSe under low carrier density and high carrier density excitations[61]
    NLO characteristics of two-dimensional materials. (a) Normalized transmissivity of BiOCl {001} and BiOCl{010} versus incident laser intensity[70]; (b) experimental result of time-resolved absorption of MXene monolayers with large flakes[71]; (c) temperature dependence of SHG signal of two-dimensional perovskite ferroelectrics, revealing symmetry breaking phase transition[72]; (d) photoluminescence spectrum of two-dimensional perovskite ferroelectrics excited at 800 nm with schematic of TPA and photoluminescence process shown in inset[72]; Z-scan results of COF-Pors under excitations of (e) 532 nm and (f) 1064 nm nanosecond pulses[73]
    Two-dimensional materials are used as saturable absorbers for Q switching or mode locking. (a) Relationship between transmissivity of graphene and incident energy density at 1053 nm[76]; (b) experimental setup of graphene mode-locked Raman fiber laser[76]; (c) mode-locked pulse sequence with repetition rate of 0.4 MHz[76]; (d) output radio-frequency spectrum of mode-locked laser[76]; (e) schematic of passively Q-switched Tm∶GdScO3 laser using SnS2 saturable absorber[77]; (f) typical Q-switching pulse train and temporal pulse profile[77]
    Schematics of laser protection. (a) Z-scan data of typical openings of graphene dispersion in NMP at 1064 nm under different pressures[25]; (b) Z-scan curves of GO, TiO2,TBT, and P25 samples under 1064 nm nanosecond pulse[85]; (c) degenerate TPA process of monolayer layer MoS2[86]; (d) SA process of multilayer MoS2[86]; (e) schematic of all-optical modulation process, and SA and NLS mechanism diagram in nanosheet dispersion[53]
    Applications of NLO characteristics of two-dimensional materials. (a) Schematic of simulation process of visible light thresholder[87]; (b) combined signals before and after three layers of PdSe2 in experiment[87]; (c) architecture of fully connected network for MNIST and Fashion-MNIST classification tasks[88]; (d) low-resolution microtubule images are reconstructed into high-resolution images using three-layer convolutional neural network[88]; (e) nonlinear energy-dependent transmission curve of microfiber with deposited Nb4C3Ty film[89]; (f) schematic of all-optical modulator[89]; (g) pulse modulation signal with frequency of 5 MHz and power of 62.82 mW[89]
    • Table 1. Linear and NLO coefficients of two dimensional materials

      View table

      Table 1. Linear and NLO coefficients of two dimensional materials

      2D materialLaser parameter

      NLO

      response

      T0 /

      %

      αNL /

      (cm/GW)

      ββeff /

      (cm/GW)

      Im χ(3)/

      esu

      Is /

      (GW·cm-2

      Ref.

      G

      (NMP D)

      532 nm,

      6 ns,

      2 Hz

      NLS502.60±0.1325

      G

      (DMF D)

      532 nm,

      6 ns,

      2 Hz

      NLS502.89±0.15

      G

      (SC D)

      532 nm,

      6 ns,

      2 Hz

      NLS502.05±0.10

      G

      (NMP D)

      1030 nm,

      340 fs,

      100 Hz

      SA58.8-(0.088±0.036)-(6.2±2.5)×10-1467.1±21.624

      G

      (PVA F)

      1030 nm,

      340 fs,

      100 Hz

      SA59.1-(0.62±0.30)-(4.7±2.2)×10-1359.9±21.6

      G

      (F)

      1030 nm,

      340 fs,

      100 Hz

      SA59-(690.0±213.3)-(1.5±0.5)×10-985.1±26.3

      G

      (PVA F)

      1030 nm,

      340 fs,

      100 Hz

      SA48-(0.66±0.30)-(5.0±2.3)×10-1388.9±27.330

      1030 nm,

      340 fs,

      100 Hz

      SA68.1-(0.27±0.13)(2.00±0.98)×10-13133.7±42.2

      515 nm,

      340 fs,

      100 Hz

      SA40.6-(0.38±0.29)-(1.4±1.1)×10-13309.4±152.7

      515 nm,

      340 fs,

      100 Hz

      SA61.1-(0.080±0.018)-(0.31±0.07)×10-13469.0±76.6

      1064 nm,

      6 ns,

      10 Hz

      SA44.9-(15.8±3.8)-(123.2±29.9)×10-133.90±0.83

      1064 nm,

      6 ns,

      10 Hz

      SA69.2-(6.2±1.2)-(48.0±9.4)×10-136.0±0.80

      GO-PcZn

      (DMF D)

      532 nm,

      6 ns,

      10 Hz

      RSA+TPA+NLS53.351.16±11.71(17.62±4.03)×10-1229

      1064 nm,

      6 ns,

      10 Hz

      TPA+ NLS50.531.04±6.28(21.39±4.33)×10-12

      GO

      (DMF D)

      532 nm,

      6 ns,

      10 Hz

      TPA+ NLS51.930.22±2.78(10.41±0.96)×10-12

      1064 nm,

      6 ns,

      10 Hz

      NLS59.96.19±0.99(4.27±0.68)×10-12

      GO-PcGa

      (DMF D)

      532 nm,

      6 ns,

      10 Hz

      TPA+RSA+NLS34.367.33±0.63(23.19±0.22)×10-1233

      1064 nm,

      6 ns,

      10 Hz

      NLS39.711.82±0.38(8.15±0.26)×10-12

      GO

      DMF D)

      532 nm,

      6 ns,

      10 Hz

      TPA+NLS51.928.10±1.41(9.68±0.49)×10-12

      1064 nm,

      6 ns, 10 Hz

      NLS59.96.08±0.78(4.19±0.54)×10-12

      GO-Cz

      (DMF D)

      532 nm,

      6 ns,

      10 Hz

      RSA+TPA+NLS52.058.56±1.17(20.17±0.40)×10-1234

      1064 nm,

      6 ns,

      10 Hz

      RSA+TPA+NLS61.523.08±0.58(15.90±0.40)×10-12

      GO/Cz

      (DMF D)

      532 nm,

      6 ns,

      10 Hz

      RSA+TPA+NLS45.514.18±0.71(4.88±0.24)×10-12

      1064 nm,

      6 ns,

      10 Hz

      RSA+TPA+NLS60.13.49±0.07(2.40±0.05)×10-12

      GO

      (DMF D)

      532 nm,

      6 ns,

      10 Hz

      TPA+ NLS46.68.45±0.17(2.91±0.06)×10-12

      1064 nm,

      6 ns,

      10 Hz

      NLS65.53.80±0.21(2.61±0.14)×10-12

      BP

      (CHP D)

      800 nm,

      100 fs,

      10 kHz

      SA42.1-0.0138-0.785×10-1445937

      1330 nm,

      100 fs,

      50 kHz

      SA45.9-0.019±0.003-(1.83±0.29)×10-14382±60

      1420 nm,

      100 fs,

      50 kHz

      SA55.5-0.015±0.009-(1.05±0.22)×10-14464±130

      1550 nm,

      100 fs,

      50 kHz

      SA59.1-0.018±0.009-(1.98±0.95)×10-14398±163

      1972 nm,

      100 fs,

      50 kHz

      SA55.3-0.100±0.028-(14.1±4.0)×10-1458.2±19.4

      2100 nm,

      100 fs,

      50 kHz

      SA60.6-0.057±0.014-(8.49±2.10)×10-1471.3±28.2

      G

      (CHP D)

      800 nm,

      100 fs,

      10 kHz

      SA38.9-0.00828-0.472×10-14764

      1330 nm,

      100 fs,

      50 kHz

      SA45.8-0.075±0.011-(7.11±1.07)×10-1481±18

      1420 nm,

      100 fs,

      50 kHz

      SA56.6-0.05±0.01-(5.18±1.02)×10-1486.7±15.8

      1550 nm,

      100 fs,

      50 kHz

      SA54.9-0.055±0.013-(6.10±1.43)×10-1481.0±17.4

      2100 nm,

      100 fs,

      50 kHz

      SA57.3-0.181±0.023-(27.2±3.4)×10-1425.40±4.82

      BP

      (ethanol D)

      1030 nm,

      340 fs,

      100 Hz

      SA80.3-(8.62±1.78)×10-3-(5.28±1.08)×10-1538

      515 nm,

      340 fs,

      100 Hz

      SA86.2-(1.59±0.17)×10-2-(4.85±0.52)×10-15

      1064 nm,

      6 ns,

      10 Hz

      SA81.9-9.17±0.94-(5.80±0.60)×10-12(1.37±0.26)×10-1

      532 nm,

      6 ns,

      10 Hz

      SA79.7-(2.85±0.39)×10-(9.02±1.24)×10-12(4.85±0.39)×10-2

      Bio-Te

      (PmPV D)

      515 nm,

      340 fs,

      100 Hz

      SA+NLS54.0-(1.07±0.11)×10-14201±3544

      800 nm,

      100 fs,

      1 kHz

      SA+NLS45.0-(1.2±0.4)×10-14261±176

      1030 nm,

      340 fs,

      100 Hz

      SA+NLS52.4-(2.76±0.58)×10-14145±23

      Bio-Te

      (PMMA F)

      2500 nm,

      35 fs,

      1 kHz

      SA74.2-20.5×10-14220

      2800 nm,

      35 fs,

      1 kHz

      SA29.6-84.1×10-14245

      G

      (NMP D)

      515 nm,

      340 fs,

      100 Hz

      SA+NLS46.1-(0.67±0.09)×10-14364±57

      800 nm,

      100 fs,

      1 kHz

      SA+NLS16.5-0.968×10-14910

      1030 nm,

      340 fs,

      100 Hz

      SA+NLS52.9-(5.9±2.1)×10-1456±11

      G

      (PMMA F)

      2500 nm,

      35 fs,

      1 kHz

      SA+TPA75.7-15.4×10-14900

      2800 nm,

      35 fs,

      1 kHz

      SA+TPA71.2

      MoS2

      (NMP D)

      800 nm,

      100 fs,

      1 kHz

      SA+FCA78.9-(4.60±0.27)×10-3-(2.52±0.15)×10-15413±2454

      MoS2

      (NVP D)

      800 nm,

      100 fs,

      1 kHz

      SA+FCA84.7-(1.78±0.02)×10-3-(1.03±0.01)×10-15833±55

      MoS2

      (CHP D)

      800 nm,

      100 fs,

      1 kHz

      SA+FCA75.2-(5.80±0.33)×10-3-(3.30±0.19)×10-15405±50

      MoS2

      (CHP D)

      1030 nm,

      340 fs,

      1 kHz

      SA30.9-(9.17±2.56)×10-2-(6.70±1.90)×10-14114±6357

      800 nm,

      100 fs,

      1 kHz

      SA32.6-(2.42±0.80)×10-2-(1.38±0.45)×10-14381±346

      515 nm,

      340 fs,

      1 kHz

      SA7.9-(0.357±0.064)-(1.31±0.23)×10-1358±21

      1064 nm,

      100 ps,

      10 kHz

      SA31.3-(5.5±1.3)-(4.18±0.98)×10-122.1±0.8

      532 nm,

      100 ps,

      10 kHz

      SA7.7-(26.2±8.8)-(9.9±3.3)×10-121.13±0.52

      MoSe2

      (CHP D)

      1030 nm,

      340 fs,

      1 kHz

      SA80.9-(1.29±0.13)×10-2-(9.40±1.00)×10-15121±22

      800nm,

      100 fs,

      1kHz

      SA45.3-(2.54±0.60)×10-3-(1.45±0.34)×10-15590±225

      515nm,

      340 fs,

      1 kHz

      SA19.4-(0.245±0.028)-(9.0±1.0)×10-1443±2

      1064 nm,

      100 ps,

      10 kHz

      SA83.0-(2.05±0.17)-(1.55±0.13)×10-120.71±0.07

      532 nm,

      100 ps,

      10 kHz

      SA21.1-(35.6±8.0)-(1.35±0.30)×10-110.39±0.16

      MoTe2

      (CHP D)

      1030nm,

      340 fs,

      1 kHz

      SA90.6-(7.50±0.47)×10-3-(5.50±0.34)×10-1568±8

      800 nm,

      100 fs,

      1 kHz

      SA86.3-(3.7±1.2)×10-3-(2.13±0.66)×10-15217±11

      515 nm,

      340 fs,

      1 kHz

      SA87.6-(1.42±0.03)×10-2-(5.20±0.12)×10-1558±11

      1064 nm,

      100 ps,

      10 kHz

      SA89.9-(2.99±0.52)-(2.27±0.39)×10-120.19±0.04

      532 nm,

      100 ps,

      10 kHz

      SA85.1-(5.54±0.72)-(2.10±0.27)×10-120.23±0.03

      G

      (CHP D)

      1030 nm,

      340 fs,

      1 kHz

      SA18.1-(9.40±3.18)×10-2-(6.90±2.30)×10-14170±51

      800 nm,

      100 fs,

      1 kHz

      SA16.8-(1.52±0.42)×10-2-(8.70±2.40)×10-15583±127

      515nm,

      340 fs,

      1 kHz

      SA13.6-(4.8±1.3)×10-2-(1.75±0.47)×10-14473±21

      MoS2 (F)

      d=(1.50±0.75)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA91.3(42.23±0.62)×10241.56±0.2058

      MoS2 (F)

      d=(5.50±0.75)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA90.1(10.65±0.62)×10239.88±0.45

      MoS2 (F)

      d=(18.7±0.7)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA76.3(4.85±0.11)×10252.61±1.09

      MoS2 (F)

      d=(50.00±0.75)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA47.8(4.99±0.02)×10254.15±0.22

      MoSe2 (F)

      d=(0.65±0.65)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA92.0(69.06±0.39)×10235.06±0.74

      MoSe2 (F)

      d=(1.40±0.70)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA91.3(42.87±0.58)×102133.85±3.00

      MoSe2 (F)

      d=(5.80±0.64)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA62.7(27.55±1.33)×10294.68±2.04

      WS2 (F)

      d=(1.20±0.65)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA91.5(40.85±0.67)×10243.24±1.70

      WS2 (F)

      d=(7.50±0.75)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA89.6(7.65±0.44)×10244.62±1.38

      WS2 (F)

      d=(14.00±0.70)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA66.6(7.88±0.18)×10258.37±1.45

      WS2 (F)

      d=(30.00±0.75)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA45.2(8.57±0.20)×10261.61±0.22

      WSe2 (F)

      d=(0.80±0.65)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA92.1(71.02±0.45)×10233.11±0.68

      WSe2 (F)

      d=(1.60±0.75)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA89.4(30.21±0.47)×10236.50±2.05

      WSe2 (F)

      d=(5.60±0.80)nm]

      1030 nm,

      340 fs,

      100 Hz

      TPA43.5(23.59±2.01)×10274.18±8.70

      PtS (F)

      d=(33.8±5.8)nm]

      515 nm,

      340 fs,

      1 kHz

      SA+NLR12.7-(2.05±1.13)×103-(4.04±1.80)×10-9266±13359

      PtS (F)

      d=(14.1±3.7)nm]

      515 nm,

      340 fs,

      1 kHz

      SA+NLR35.7-(3.80±0.30)×103-(3.72±0.30)×10-9104.00±6.80

      PtS (F)

      d=(10.3±2.9)nm]

      515 nm,

      340 fs,

      1 kHz

      SA+NLR52.8-(3.27±0.04)×103-(3.20±0.04)×10-9104.00±2.53

      PtS (F)

      d=(7.2±1.2)nm]

      515 nm,

      340 fs,

      1 kHz

      SA+NLR64.0-(1.87±0.82)×103-(1.83±0.80)×10-9158±64

      PtS (F)

      d=(6.5±2.0)nm]

      515 nm,

      340 fs,

      1 kHz

      SA+NLR76.6-(1.22±0.08)×103-(1.20±0.07)×10-9215.0±14.9

      PtS (F)

      d=(1.6±2.5)nm]

      515 nm,

      340 fs,

      1 kHz

      SA+NLR82.3-(3.39±1.74)×103-(3.31±1.71)×10-9242±129

      PtSe2 (F)

      d=0.5 nm)

      800 nm,

      100 fs

      SA79.4-4.89×103-2.06×10-8187.564

      PtSe2 (F)

      d=1 nm)

      800 nm,

      100 fs

      SA68.1-8.80×103-3.71×10-892.3

      PtSe2 (F)

      d=3 nm)

      800 nm,

      100 fs

      SA26.2-9.96×103-4.20×10-875.0

      PtSe2

      (4 layers)

      1030 nm,

      340 fs,

      100 Hz

      SA+TPA79.5(2.96±0.05)×104(147.10±5.50)×10-1014.5±1.060

      PtSe2

      (7 layers)

      1030 nm,

      340 fs,

      100 Hz

      SA+TPA68.7(1.64±0.09)×104(81.20±0.80)×10-1020.0±3.2

      PtSe2

      (17 layers)

      1030 nm,

      340 fs,

      100 Hz

      SA41.153.0±8.5

      PtSe2

      (55 layers)

      1030 nm,

      340 fs,

      100 Hz

      SA24.523.7±1.9

      PtSe2

      (4 layers)

      515 nm,

      340 fs,

      100 Hz

      SA60.854.4±11.0

      PtSe2

      (7 layers)

      515 nm,

      340 fs,

      100 Hz

      SA49.784.7±4.5

      PtSe2

      (17 layers)

      515 nm,

      340 fs,

      100 Hz

      SA30.6104.5±7.5

      PtSe2

      (55 layers)

      515 nm,

      340 fs,

      100 Hz

      SA18.692.1±6.5

      InSe

      (NMP D)

      520 nm,

      380 fs,

      1 kHz

      SA81.3

      -(2.42±0.10)

      ×10-2

      -(3.52±0.15)×10-1316.6761

      532 nm,

      6 ns,

      10 Hz

      SA80.2-(13.77±0.36)(2.05±0.05)×10-100.119±0.005

      InSe

      d=387.4 nm)

      520 nm,

      380 fs,

      1 kHz

      TPA+NLR740.37±23.40(1.83±0.08)×10-821

      1040 nm,

      380 fs,

      1 kHz

      TPA+NLR2.72±0.87(1.04±0.48)×10-10

      CNTs

      (NMP D)

      1030 nm,

      340 fs,

      100 Hz

      SA+RSA+FCA97(0.99±0.15)×10-211.0±2.165
      MoS2-L/CNTs (NMP D)

      1030 nm,

      340 fs,

      100 Hz

      SA+TPA+RSA96(0.93±0.17)×10-215.8±3.5

      CNTs

      (NMP D)

      1030 nm,

      340 fs,

      100 Hz

      SA+RSA+FCA63(5.50±0.23)×10-248.2±4.9
      MoS2-L/CNTs (NMP D)

      1030 nm,

      340 fs,

      100 Hz

      SA+TPA+RSA62(6.25±0.26)×10-231.8±4.2

      CNTs

      (PVA F)

      1030 nm,

      340 fs,

      100 Hz

      SA+RSA+FCA80(25.5±3.5)×10-258.3±5.1
      MoS2-L/CNTs (PVA F)

      1030 nm,

      340 fs,

      100 Hz

      SA+TPA+RSA80(30.9±4.5)×10-252.1±4.9

      MoS2

      (NMP D)

      532 nm,

      6 ns,

      2 Hz

      NLS740.045±0.020(016±0.07)×10-13

      1064 nm,

      6 ns,

      2 Hz

      NLS820.054±0.010(0.39±0.07)×10-13
      MoS2-L/CNTs (NMP D)

      532 nm,

      6 ns,

      2 Hz

      NLS801.51±0.20(5.49±0.73)×10-13

      1064 nm,

      6 ns,

      2 Hz

      NLS810.39±0.03(2.83±0.22)×10-13

      MoS2-H/CNTs

      (NMP D)

      532 nm,

      6 ns,

      2 Hz

      NLS811.31±0.10(4.76±0.36)×10-13

      1064 nm,

      6 ns,

      2 Hz

      NLS800.27±0.02(1.96±0.15)×10-13

      CNTs

      (NMP D)

      532 nm,

      6 ns,

      2 Hz

      NLS780.56±0.02(2.03±0.07)×10-13

      1064 nm,

      6 ns,

      2 Hz

      NLS800.11±0.01(0.80±0.07)×10-13

      MoS2

      (ethanol D)

      515 nm,

      340 fs,

      1 kHz

      SA73.9-(3.71±0.60)×10-2-(1.20±0.19)×10-1425.3866
      Ag/MoS2 (ethanol D)

      515 nm,

      340 fs,

      1 kHz

      SA67.4-(10.93±0.60)×10-2-(3.54±0.19)×10-1416.57

      MoS2

      d=0.7nm)

      1030 nm,

      350 fs,

      95.667

      Cu2-xS

      d=25.1 nm,)

      1030 nm,

      350 fs

      TPA50.2(1.68±0.06)×10417.61±0.20

      MoS2-Cu2-xS HS

      d=16.7 nm)

      1030 nm,

      350 fs

      TPA88.4(3.04±0.34)×10425.44±1.38
      BiOCl{001}

      515 nm,

      340 fs,

      100 Hz

      RSA91.9(8.17±1.13)×10-4(2.37±0.49)×10-1670
      BiOCl{010}

      515 nm,

      340 fs,

      100 Hz

      RSA91.1(11.53±1.3)×10-4(3.34±0.48)×10-16
      PbI2(cyclopentanone D)

      515 nm,

      340 fs,

      100 Hz

      SA43-0.104±0.020-(3.20±0.82)×10-1428.674

      532 nm,

      6 ns,

      1 Hz

      SA51-21.5±7.7-(6.86±2.48)×10-120.20±0.02

      MXene

      (large)

      800 nm,

      100 fs,

      100 kHz

      TPA(1.20±0.22)×10-2(2.14±0.38)×10-1471

      MXene

      (small)

      800 nm,

      100 fs,

      100 kHz

      TPA(0.89±0.20)×10-2(1.58±0.34)×10-14
    Tools

    Get Citation

    Copy Citation Text

    Yan Wang, Ningning Dong, Jun Wang. Research Progress in Nonlinear Optics and Ultrafast Dynamics of Two‑Dimensional Materials[J]. Chinese Journal of Lasers, 2024, 51(11): 1101025

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Dec. 19, 2023

    Accepted: Jan. 22, 2024

    Published Online: Jun. 4, 2024

    The Author Email: Dong Ningning (n.n.dong@siom.ac.cn)

    DOI:10.3788/CJL231541

    CSTR:32183.14.CJL231541

    Topics