Infrared and Laser Engineering, Volume. 52, Issue 2, 20220488(2023)
Review on the measurement methods of mirror seeing of large-aperture telescope
[1] Trolinger J D. Diagnostics of turbulence by holography[J]. Advances in Laser Technology for the Atmospheric Sciences, 18, 161-166(1977).
[2] [2] Dekens F G, Kirkman D, Chanan G A, et al. Highspeed seeing measurements at the Keck Telescope[C]Proceedings of SPIE, 1994, 2201.
[3] [3] Miyashita A, Oschmann J M, Takato N, et al. Statistics of the weather data, environment data, the seeing of the subaru telescope[C]Proceedings of SPIE, 2004, 5489: 207.
[4] Yang Fei, An Qichang, Zhang Jing, et al. Seeing metrology of large aperture mirror of telescope[J]. Optics and Precision Engineering, 25, 2572-2579(2017).
[5] Yellowhair J, Burge J H. Analysis of a scanning pentaprism system for measurements of large flat mirrors[J]. Appl Opt, 46, 8466-8474(2007).
[6] An Qichang, Wu Xiaoxia, Zhang Jingxu, et al. Detection method of mirror seeing based on curvature/slope hybrid sensing[J]. Infrared and Laser Engineering, 50, 20200419(2021).
[7] Shatokhina I, Hutterer V, Ramlau R. Review on methods for wavefront reconstruction from pyramid wavefront sensor data[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 6, 010901(2020).
[8] [8] Zhang H. Research on wavefront testing of large aperture space optical systems based on subaperture scanning technology[D]. Changchun: Graduate School of Chinese Academy of Sciences(Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2017. (in Chinese)
[9] Zhang Yong, Yang Dehua, Cui Xiangqun. Measuring seeing with a Shack-Hartmann wave-front sensor during an active-optics experiment[J]. Appl Opt, 43, 729-734(2004).
[10] [10] Ilya Galaktionov, Alexer Nikitin, Julia Sheldakova, et al. ShackHartmann sens with Bspline approximation technique[C]Proceedings of SPIE, 2022, 11987: 119870K.
[11] [11] Noam Sapiens. 2D reverse ShackHartmann ocular refraction measurement[C]Proceedings of SPIE, 2021, 11623: 116232A.
[12] Rukosuev A L, Belousov V N, Nikitin A N, et al. Laboratory simulation of atmospheric turbulence in the problem of correcting laser radiation wavefront distortions by using a fast adaptive optical system[J]. Izvestiya, Physics of the Solid Earth, 57, 789-794(2021).
[13] Wu Wei, Luo Zirong, Yu Naihui, et al. Computer-aided alignment method based on Shack-Hartman sensor[J]. Acta Optica Sinica, 40, 2022001(2020).
[14] Han Yanna, Hu Xingqi, Dong Bing. Iterative extrapolation method to expand dynamic range of Shack-Hartman wavefront sensors[J]. Acta Optica Sinica, 40, 1611004(2020).
[15] Qian Siyu, Liu Peng, Jing Wenbo, et al. Study on the method of spot centroid detection for optimizing the Shack-Hartmann wavefront sensor[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 43, 19-24(2020).
[16] Roddier F. Curvature sensing and compensation: a new concept in adaptive optics[J]. Applied Optics, 27, 1223-1225(1988).
[17] Neil M A A, Booth M J, Wilson T. New modal wave-front sensor: a theoretical analysis[J]. Journal of the Optical Society of America A, 17, 1098-1107(2000).
[18] Booth M J, Neil M A A, Wilson T. New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy[J]. Journal of the Optical Society of America A, 19, 2112-2120(2002).
[19] Neil M, Booth M J, Wilson T. Closed-loop aberration correction by use of a modal Zernike wave-front sensor.[J]. Optics Letters, 25, 1083-1085(2000).
[20] Ghebremichael F, Andersen G P, Gurley K S. Holography-based wavefront sensing[J]. Applied Optics, 47, 62-69(2008).
[21] [21] Gladysz S, Zepp A, Segel M, et al. Wavefront sensing f terrestrial, underwater, spacebne freespace optical communications[C]Laser Communication Propagation through the Atmosphere Oceans X, 2021, 11834: 118340F.
[22] [22] Byoungho Lee, SeungWoo Nam, Dongyeon Kim. Aberration crection in holographic displays[C]Proceedings of SPIE, 2022, 12025: 120250A.
[23] [23] Yao K N. Study on holographic wavefront sensing method dynamic holographic adaptive optics[D]. Changchun: Graduate School of Chinese Academy of Sciences(Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2015. (in Chinese)
[24] Cheng Jingxin, Yang Haibo, Li Man, et al. Suppression of high order diffraction in holographic wave-front sensor[J]. Acta Optica Sinica, 41, 1009001(2021).
[25] Zepp A, Gladysz S, Stein K, et al. Simulation-based design optimization of the holographic wavefront sensor in closed-loop adaptive optics[J]. Light: Advanced Manufacturing, 3, 1-13(2022).
[26] [26] Venediktov V Y, Gelaya A, Fedov E, et al. Approaches to crosstalk noise reduction in modal holographic wavefront senss[C]Optical Sensing Detection, 2018, 10680: 106802O.
[27] Wang Jia, Liu Rongming, Wang Jiachao, et al. Measurement of three-dimensional displacements by radial shearing interfero-meter[J]. Acta Physica Sinica, 70, 20201451(2021).
[28] Zhou Jianbiao, Yang Zihan, Liang Yanmei. Study on wavefront reconstruction accuracy of parallel plate lateral shearing interferometer[J]. Journal of Optoelectronics·Laser, 31, 921-927(2020).
[29] [29] Liu L. Comprehensive analysis of radial shear interference errs[D]. Xi’an: Xi’an Technological University, 2019. (in Chinese)
[30] Wang Dandan, Gao Yan, Li Weixian, et al. Digital shearing speckle pattern interference non-destructive testing of glass curtain wall defects[J]. China Measurement & Test, 48, 29-34(2022).
[31] [31] Marija Strojnik. Rotationally shearing interferometry in the recovery of faint signals[C]Proceedings of SPIE, 2021, 11830: 1183007.
[32] Masatoshi Imbe. Spatial axial shearing common-path interfero-meter for natural light[J]. Appl Opt, 59, 11332-11336(2020).
[33] Luis García-Lechuga, Patricia Pérez-Luna, Victor H Flores, et al. Parallel phase shifting radial shear interferometry with complex fringes and unknown phase shift[J]. Appl Opt, 59, 2128-2134(2020).
[34] Wang Min, Xie Aimin, Huang Xunming. Preliminary study on direct schlieren technology[J]. Journal of Ordnance Equipment Engineering, 41, 244-248(2020).
[35] Hui M, Hussain F. Holographic particle velocimetry: A 3D measurement technique for vortex interactions, coherent structures and turbulence[J]. Fluid Dynamics Research, 8, 33-52(1991).
[36] Sun Guilin, Cong Zhen. Measurement of three-dimensional turbulence by holographic technique[J]. Laser & Optoelec-tronics Progress, 32, 31(1995).
[37] Luo Rui, Sun Yanfei, Yang, Xianyong. 3-D holographic fluorescent particle image velocimetry for micro-fluidic measurements[J]. Journal of Engineering Thermophysics, 493-495(2006).
[38] [38] Zhao P J. Study on the threedimensional particle tracking velocimetry based on the defocusing microscopic image[D]. Hangzhou: China Jiliang University, 2016. (in Chinese)
[39] Li Xiaowei, Wang Hongwei, Huang Zhan, et al. Research advances of tomographic particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 35, 11(2021).
[40] [40] Hussain F, Meng H, Liu D, et al. Advances in holographic particle velocimetry[C]Proceedings of SPIE, 1993, 2005:1116.
[41] Tomoyoshi Shimobaba, Takayuki Takahashi, Yota Yamamoto, et al. Digital holographic particle volume reconstruction using a deep neural network[J]. Appl Opt, 58, 1900-1906(2019).
[42] [42] Xu S, Xie Y, Xia Y, et al. Evaluation on mirr seeing f AIMS solar telescope[C]The International Conference on Photonics Optical Engineering, 2019, 11052: 110520O.
[43] [43] Barr L D, Fox J, Poczulp G A, et al. Seeing studies on a 1.8m mirr[C]Proceedings of SPIE, 1990, 1236: 492506.
[44] Tallis M, Bailey V P, Macintosh B, et al. Effects of mirror seeing on high-contrast adaptive optics instruments[J]. Journal of Astronomical Telescopes Instruments and Systems, 6, 1(2020).
[45] [45] Pazder J S, Vogiatzis K, Angeli G Z. Dome mirr seeing estimates f the Thirty Meter Telescope[C]Proceedings of SPIE, 2008, 7017: 70170R.
[46] [46] Zhang J. Study on control methods of honeycomb mirr temperature mirr seeing[D]. Chengdu: Graduate School of Chinese Academy of Sciences (Institute of Optics Electronics, Chinese Academy of Sciences), 2013. (in Chinese)
[47] [47] Liu X Y. Research on thermal control system of 4 m SiC lightweight primary mirr[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese)
[48] [48] Li Rong, Shi Huli. Chen Zhiping. Thermal calculation simulation of dome in LAMOST[C]China CAE Engineering Analysis Technology Annual Meeting National Computer Aided Engineering, 2011. (in Chinese)
[49] Zhang Jingxu. Overview of structure technologies of large aperture ground-based telescopes[J]. Chinese Optics, 5, 327-336(2012).
[50] Zhu Ran, Gu Bozhong, Xu Jieqian, et al. Thermal control technology of primary mirror of 2.5 m class solar telescope[J]. Acta Optica Sinica, 38, 1112001(2018).
[51] [51] Bouchez A H, Angeli G Z, Ashby D S, et al. An overview status of GMT active adaptive optics[C]Adaptive Optics Systems VI. International Society f Optics Photonics, 2018, 10703: 107030W.
Get Citation
Copy Citation Text
Jiakang Zhu, Qichang An, Fei Yang. Review on the measurement methods of mirror seeing of large-aperture telescope[J]. Infrared and Laser Engineering, 2023, 52(2): 20220488
Category: Photoelectric measurement
Received: Jun. 5, 2022
Accepted: --
Published Online: Mar. 13, 2023
The Author Email: