Journal of Geo-information Science, Volume. 22, Issue 1, 122(2020)

Estimating Ground-Level PM2.5 Concentrations Across China Using Geographically Neural Network Weighted Regression

Zhenhong DU1,1,2,2、*, Sensen WU1,1,2,2, Zhongyi WANG1,1, Yuanyuan WANG1,1,2,2, Feng ZHANG1,1,2,2, and Renyi LIU1,1,2,2
Author Affiliations
  • 1School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
  • 1浙江大学地球科学学院,地理与空间信息研究所,杭州 310027
  • 2Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310028, China
  • 2浙江省资源与环境信息系统重点实验室,杭州 310028
  • show less
    Figures & Tables(15)
    Spatial distribution of the PM2.5 monitoring stations of China in 2017 and the spatial partitions of the training, validation, and testing datasets
    Pre-processing of the experimental dataset
    Definition of the GNNWR model for PM2.5 estimation
    Structure design of the spatial weighted neural network
    Training and validation procedures of the GNNWR model
    Performance variations for the training and validation datasets of the GNNWR model
    Estimates of the annual mean PM2.5 across China in 2017
    Details comparison of the annual mean PM2.5 estimates between the GWR and GNNWR models
    Spatial distribution of absolute estimation errors of the annual mean PM2.5 of China in 2017 for the OLR, GWR, and GNNWR models
    • Table 1. Data sources and description

      View table
      View in Article

      Table 1. Data sources and description

      数据类型数据名称变量名称时间分辨率空间分辨率数据来源
      站点PM2.5监测站点PM2.5h-中国国家气象局
      遥感气溶胶AODd3 km、10 kmLAADS
      气象2 m温度TEMPh0.5°ERA5 hourly data
      降水量TPh0.5°ERA5 hourly data
      10 m风速WSh0.5°ERA5 hourly data
      10 m风向WDh0.5°ERA5 hourly data
      地理地形DEM-1弧分NOAA
    • Table 2. Settings of GWR models

      View table
      View in Article

      Table 2. Settings of GWR models

      模型名称带宽优化准则核函数
      类型结构
      GWR-AFGAICc固定型Gaussian
      GWR-AABAICc适应型Bi-square
    • Table 3. Settings of architectures and hyper-parameters for the GNNWR model

      View table
      View in Article

      Table 3. Settings of architectures and hyper-parameters for the GNNWR model

      输入层隐含层1隐含层2隐含层3输出层
      10045122561287
      学习率epoch最大值批处理大小Dropout
      0.220 000640.8
    • Table 4. Exploratory analysis and descriptive statistics of the experimental dataset across China in 2017

      View table
      View in Article

      Table 4. Exploratory analysis and descriptive statistics of the experimental dataset across China in 2017

      变量PM2.5/(μg/m3)AODDEM/m温度/K降水量/m风速/(m/s)风向/°
      相关系数-0.564-0.3450.135-0.234-0.373-0.461
      显著性水平-0.0010.0010.0010.0010.0010.001
      方差膨胀因子-3.0051.6364.6392.1072.3574.184
      平均值46.070.540393.460288.0008.95E-057.080147.990
      标准差15.560.180658.4605.1704.82E-050.94043.150
      最小值8.340.070-5.250271.8101.06E-064.43080.110
      最大值103.891.1404539.960297.7202.34E-0411.500236.040
    • Table 5. Fitting and prediction performances of the PM2.5 estimates for the OLR, GWR, and GNNWR models

      View table
      View in Article

      Table 5. Fitting and prediction performances of the PM2.5 estimates for the OLR, GWR, and GNNWR models

      模型训练集(拟合精度)测试集(预测精度)
      R2RMSEMAEMAPE/%AICcF1p-valueR2RMSEMAEMAPE/%
      OLR0.51710.5788.13220.27579.202--0.47712.0238.83819.7
      GWR-AFG0.7597.4785.79714.56999.4910.5380.0100.6839.3596.96316.1
      GWR-AAB0.8984.8603.4788.76673.5370.2970.0100.6759.4845.42312.6
      GNNWR0.9144.4523.2357.95833.0020.1370.0100.8316.8374.68811.0
    • Table 6. Spatial nonstationarity diagnosis of each variable in the GNNWR model

      View table
      View in Article

      Table 6. Spatial nonstationarity diagnosis of each variable in the GNNWR model

      变量GWR-AFGGWR-AABGNNWR
      F2p-valueF2p-valueF2p-value
      常量项2407.90.0011269.10.001590.50.001
      AOD1379.70.0011199.40.001243.70.001
      DEM1983.90.0011272.20.001146.70.001
      温度3783.70.0011229.60.001127.70.001
      降水量1237.40.0011170.10.001214.70.001
      风速1626.00.0011016.20.001159.00.001
      风向2379.80.0011081.60.00173.60.001
    Tools

    Get Citation

    Copy Citation Text

    Zhenhong DU, Sensen WU, Zhongyi WANG, Yuanyuan WANG, Feng ZHANG, Renyi LIU. Estimating Ground-Level PM2.5 Concentrations Across China Using Geographically Neural Network Weighted Regression[J]. Journal of Geo-information Science, 2020, 22(1): 122

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 22, 2019

    Accepted: --

    Published Online: Sep. 16, 2020

    The Author Email: Zhenhong DU (duzhenhong@zju.edu.cn)

    DOI:10.12082/dqxxkx.2020.190533

    Topics