Spacecraft Recovery & Remote Sensing, Volume. 45, Issue 3, 92(2024)

Water Extraction Method of High Resolution Remote Sensing Image Based on ASPP-SCBAM-DenseUnet

Yuting XIE1, Ping LIU1, Wenming SHEN2, Yu GAO1, Shufeng HAO1、*, Xin HAN1, and Yuang LI3
Author Affiliations
  • 1College of Computer Science and Technology(Colloge of Data Science), Taiyuan University of Technology, Jinzhong 030600, China
  • 2Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment, Beijing 100094, China
  • 3College of Software, Taiyuan University of Technolgy, Jinzhong 030600, China
  • show less
    References(20)

    [1] FRAZIER P S, PAGE K J. Water Body Detection and Delineation with Landsat TM Data[J]. Photogrammetric Engineering Remote Sensing: Journal of the American Society of Photogrammetry, 66, 1461-1467(2000).

    [12] [12] LIU Z H, CHEN X M, ZHOU S P, et al. DUP: Water Body Segmentation with Dense Block MultiScale Spatial Pyra Pooling f Remote Sensing Images[J]. Remote Sensing, 2022, 14(21): 5567. DOI:10.3390RS14215567.

    [15] [15] RONNEBERGER O, FISCHER P, BROX T. U: Convolutional wks f Biomedical Image Segmentation[C]Proceeding of International Conference on Medical Image Computing ComputerAssisted Intervention: 9351. Munich: Springer, 2015: 234241.

    [16] [16] HUANG G, LIU Z, MAATEN L V D, et al. Densely Connected Convolutional wks[C]2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR), July 2126, 2017, Honolulu, HI, USA. IEEE, 2017: 47004708. DOI: 10.1109cvpr.2017.243.

    [17] [17] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module[C]Computer Vision – ECCV 2018: 15th European Conference, September 814, 2018, Munich, Germany. ACM, 2018: 319. DOI: 10.10079783030012342_1.

    [18] [18] CHEN Y T, ZHANG X Z, CHEN W N, et al. Research on Recognition of Fly Species Based on Improved Retina CBAM[J]. IEEE Access, 2020, 8: 102907102919. DOI: 10.1109access.2020.2997466.

    [20] [20] CHOLLET F. Xception: Deep Learning with Depthwise Separable Convolutions[C]2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR), July 2126, 2017, Honolulu, HI, USA. IEEE, 2017: 12511258. DOI: 10.1109cvpr.2017.195.

    [21] [21] HOWARD A G, ZHU M, CHEN B, et al. Mobiles: Efficient Convolutional Neural wks f Mobile Vision Applications[EBOL]. [20231226]. arXiv: 1704.04861, 2017. DOI: 10.48550arXiv.1704.04861.

    [22] [22] SODRE C H, LI W Q, VERCAUTEREN T, et al. Generalised Dice Overlap as a Deep Learning Loss Function f Highly Unbalanced Segmentations[C]International Wkshop on Deep Learning in Medical Image Analysis, September 14, 2017, Quebec City, Canada. Dementia Research Centre, UCL Institute of Neurology, 2017: 240248. DOI: 10.10079783319675589_28.

    [25] [25] LONG J, SHELHAMER E, DARRELL T. Fully Convolutional wks f Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 39(4): 640651. DOI: 10.1109CVPR.2015.7298965.

    [26] [26] CHAURASIA A, CULURCIELLO E. Link: Exploiting Encoder Representations f Efficient Semantic Segmentation[C]2017 IEEE Visual Communications Image Processing (VCIP), St. Petersburg, FL, USA. IEEE, 2017: 14. DOI: 10.1109vcip.2017.8305148.

    [27] [27] CHEN L C, ZHU Y, PAPREOU G, et al. Encoderdecoder with Atrous Separable Convolution f Semantic Image Segmentation[C]Proceedings of the 15th European Conference on Computer vision: 11211. Munich, Germany: Springer, 2018: 833851. DOI: 10.10079783030012342_49.

    Tools

    Get Citation

    Copy Citation Text

    Yuting XIE, Ping LIU, Wenming SHEN, Yu GAO, Shufeng HAO, Xin HAN, Yuang LI. Water Extraction Method of High Resolution Remote Sensing Image Based on ASPP-SCBAM-DenseUnet[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(3): 92

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 10, 2024

    Accepted: --

    Published Online: Oct. 30, 2024

    The Author Email: Shufeng HAO (haoshufeng@tyut.edu.cn)

    DOI:10.3969/j.issn.1009-8518.2024.03.010

    Topics