Opto-Electronic Engineering, Volume. 52, Issue 3, 240281(2025)

Edge feature and detail-aware network integrated YOLOv8s algorithm for hip joint keypoint detection

Jia Lv1,2, Xunlu Duan1, and Xin Chen3、*
Author Affiliations
  • 1College of Computer and Information Sciences, Chongqing Normal University, Chongqing 401331, China
  • 2National Center for Applied Mathematics in Chongqing, Chongqing Normal University, Chongqing 401331, China
  • 3Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
  • show less
    Figures & Tables(17)
    Diagnostic reference for developmental dysplasia of the hip[8]
    Overall network structure diagram of EDA-YOLOv8s
    Structural diagram of EFEM module
    Comparison diagram of three neck network structures in YOLOv8s. (a) Neck; (b) Small-neck; (c) DAN
    Structural diagram of DSFM module
    Structure diagram of CSP-OKM module and associated submodules. (a) CSP-OKM; (b) FSAM; (c) DCAM; (d) OKM
    Heatmaps of hip X-ray image after different improved modules. (a) YOLOv8s; (b) YOLOv8s+EFEM; (c) YOLOv8s+DAN; (d) EDA-YOLOv8s
    The relationship diagram between APE and AAE after using different improvement modules
    Experimental results of successful detection rate of keypoint
    Comparison of keypoint localization error distribution. (a) YOLOv8s; (b) EDA-YOLOv8s
    Visualization comparison of detection results between EDA-YOLOv8s and YOLOv8s
    Visualization comparison of keypoint angle between EDA-YOLOv8s and YOLOv8s. (a) YOLOv8s; (b) EDA-YOLOv8s
    • Table 1. Evaluation index and computational formula

      View table
      View in Article

      Table 1. Evaluation index and computational formula

      IndexCalculation formula
      PELl(i=1nTliPli)/n
      APE(PELRASM+PELRTCC+PELLTCC+PELLASM)/4
      EAk(i=1n|TkiPki|)/n
      AAE(EAR+EAL)/2
      SDR{i:(xTlixPli)2+(yTliyPli)2z}×100%/n
      MDRmn×100%
    • Table 2. The ablation and edge detection operator comparison experiment results in the EFEM module

      View table
      View in Article

      Table 2. The ablation and edge detection operator comparison experiment results in the EFEM module

      EFEM (edge detection operator)BNAPE/pixelAAE/(°)
      ××4.51501.6504
      Sobel×4.36521.5842
      Sobel4.34591.5565
      Prewitt4.34701.5555
      Laplacian4.41301.6934
    • Table 3. Comparison experiment results of three neck network algorithms

      View table
      View in Article

      Table 3. Comparison experiment results of three neck network algorithms

      Neck networkAPE/pixelAAE/(°)FLOPs/G
      YOLOv8s (neck)4.51501.650428.8
      YOLOv8s+ (small-neck)4.71501.732236.9
      YOLOv8s+ (DAN)4.32811.545134.8
    • Table 4. The influence of different improved modules on the algorithm

      View table
      View in Article

      Table 4. The influence of different improved modules on the algorithm

      Detection algorithmPELRASM/pixelPELRTCC/pixelPELLTCC/pixelPELLASM/pixelAPE/pixelEAR/(°)EAL/(°)AAE/(°)
      YOLOV8s4.84763.74043.46746.00454.51501.62501.67571.6504
      YOLOv8s+EFEM4.61333.76923.22585.77524.34591.48861.62441.5565
      YOLOv8s+DAN4.12843.69473.37846.11104.32811.25871.83151.5451
      EDA-YOLOv8s4.28513.48703.25305.81074.20901.34201.63241.4872
    • Table 5. Comparison experiment results of different keypoint detection algorithms

      View table
      View in Article

      Table 5. Comparison experiment results of different keypoint detection algorithms

      Detection algorithmPELRASM/pixelPELRTCC/pixelPELLTCC/pixelPELLASM/pixelAPE/pixelEAR/(°)EAL/(°)AAE/(°)MDR/%
      YOLOv8n5.50123.81003.20565.90994.60671.46981.71881.59430
      YOLOv8s4.84763.74043.46746.00454.51501.62501.67571.65040
      YOLOv9s4.64633.78933.47166.22524.53311.48781.80331.64560
      YOLOv10s4.68063.78203.30075.94864.42801.45941.83131.64546.0
      PN-UNet4.54113.71153.68816.20454.53631.43841.65331.54580
      CircleNet4.83483.72343.61135.83754.50171.49881.79961.64920
      CBA-YOLOv5s4.38283.64643.55066.37734.48931.32351.84881.58610
      EDA-YOLOv8s4.28513.48703.25305.81074.20901.34201.63241.48720
    Tools

    Get Citation

    Copy Citation Text

    Jia Lv, Xunlu Duan, Xin Chen. Edge feature and detail-aware network integrated YOLOv8s algorithm for hip joint keypoint detection[J]. Opto-Electronic Engineering, 2025, 52(3): 240281

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Dec. 2, 2024

    Accepted: Feb. 25, 2025

    Published Online: May. 22, 2025

    The Author Email: Xin Chen (陈欣)

    DOI:10.12086/oee.2025.240281

    Topics