Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 9, 1308(2025)

Aerial small target detection algorithm based on context collaborative perception

Luxia YANG1,2, Zekai LIU1,2, Hongrui ZHANG1,2、*, and Yongjie MA3
Author Affiliations
  • 1School of Computer Science and Technology, Taiyuan Normal University, Jinzhong 030619, China
  • 2Shanxi Provincial Key Laboratory of Intelligent Optimization Computing and Blockchain Technology, Jinzhong 030619, China
  • 3School of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
  • show less
    Figures & Tables(19)
    Lightweight detection algorithm for context multi-scale collaborative sensing
    Comparison of C2f and LMEM structures
    MKFES module structure
    Structure diagram of CCFFAM module
    Diagram of RFAConv structure
    Dysample flow chart
    Detailed implementation of the Dysample module
    Design of small target detection head
    Heat maps of different models under two datasets
    Comparison of small target detection for different algorithms on VisDrone2019 dataset
    • Table 1. Parameter settings

      View table
      View in Article

      Table 1. Parameter settings

      参数
      imgsz640
      batch4
      workers2
      optimizerSGD
      ampTrue
      Ir00.01
      lrf0.01
      momentum0.937
    • Table 2. Influences of LMEM module on the model in different places

      View table
      View in Article

      Table 2. Influences of LMEM module on the model in different places

      位置PRmAP50mAP(50~95)Parameters/M
      P50.440.330.3340.1932.96
      P3、P4、P50.4510.3330.3360.1952.90
      P2、P3、P4、P50.4580.3350.3380.1962.87
    • Table 3. Influence of downsampling convolution on the model in CCFFAM module

      View table
      View in Article

      Table 3. Influence of downsampling convolution on the model in CCFFAM module

      下采样卷积PRmAP50mAP(50~95)Parameters/M
      Adown0.4690.3670.3730.2222.13
      Conv0.4840.3650.380.2272.17
      RFAConv0.4840.3700.3850.2302.17
    • Table 4. Influences of different position detection heads on the model

      View table
      View in Article

      Table 4. Influences of different position detection heads on the model

      检测头PRmAP50mAP(50~95)Parameters/M
      P3、P4、P50.4510.3350.3330.1953.01
      P2、P3、P40.4760.3530.3690.222.01
      P2、P3、P4、P50.4570.360.3640.2182.92
    • Table 5. Influences of different loss functions on the model

      View table
      View in Article

      Table 5. Influences of different loss functions on the model

      损失函数PRmAP50mAP(50~95)
      Inner-EIoU0.4750.3730.3760.225
      Inner-DIoU0.4740.3640.3740.224
      Focaler-MPDIoU0.4750.3720.3800.226
      Focaler-EIoU0.4830.3670.3780.225
      Focaler-CIoU0.4870.3720.3860.231
    • Table 6. Comparison of detection results of various small targets on VisDrone2019 dataset

      View table
      View in Article

      Table 6. Comparison of detection results of various small targets on VisDrone2019 dataset

      ClassYOLOv8nOurs
      PRMap50mAP(50~95)PRmAP50mAP(50~95)
      all0.4510.3350.3330.1950.4870.3720.3860.231
      pedestrian0.4560.3460.3350.1550.5440.4130.4540.212
      people0.5250.2350.2820.1010.5730.3220.3750.152
      bicycle0.2950.0860.0870.0340.2470.1570.120.049
      car0.6440.7550.760.5230.6650.8070.8120.573
      van0.5040.3740.3880.2680.4980.4260.4320.307
      truck0.3960.3040.2780.1810.4690.30.3190.215
      tricycle0.3620.2410.2140.1150.4520.230.2430.14
      awning-tricycle0.2490.1620.1170.0730.3020.1540.1430.094
      bus0.6240.4490.4820.340.5860.4560.5050.359
      motor0.4530.3950.370.1550.5370.4530.460.206
    • Table 7. Ablation experiments on VisDrone2019 dataset

      View table
      View in Article

      Table 7. Ablation experiments on VisDrone2019 dataset

      实验方法LMEM模块CCFFAM模块改进检测头Focaler-CIoUPRmAP50mAP(50~95)Parameters/M
      YOLOv8n0.4510.3350.3330.1953.01
      A0.4580.3280.3380.1962.87
      B0.4430.3440.3420.2013.01
      C0.4760.3530.3690.222.01
      D0.4480.3390.3350.1973.01
      E0.4810.3730.3810.2272.23
      F0.4840.3700.3850.2302.17
      G0.4870.3720.3860.2312.17
    • Table 8. Ablation experiments on DOTAv1 dataset

      View table
      View in Article

      Table 8. Ablation experiments on DOTAv1 dataset

      实验方法LMEM模块CCFFAM模块改进检测头Focaler-IoUPRmAP50mAP(50~95)Parameters/M
      YOLOv8n0.6370.3910.4150.253.01
      A0.6590.3870.4170.252.80
      B0.6410.3940.4200.2533.02
      C0.6530.3960.4250.2542.10
      D0.6470.3910.4170.2513.01
      E0.6510.40.4270.2562.34
      F0.6570.3980.4290.2562.17
      G0.6630.4030.4290.2572.17
    • Table 9. Comparison experiments on VisDrone2019 dataset

      View table
      View in Article

      Table 9. Comparison experiments on VisDrone2019 dataset

      模型PRmAP50mAP(50~95)Parameters/M
      YOLOv3n0.4470.3330.3290.1894.06
      YOLOv5n0.4420.3370.3320.1812.50
      YOLOv6n0.4040.3120.2940.1674.23
      YOLOv8n0.4510.3350.3330.1953.01
      ASF-YOLO0.4360.3410.330.1862.52
      ours0.4870.3720.3860.2312.17
    Tools

    Get Citation

    Copy Citation Text

    Luxia YANG, Zekai LIU, Hongrui ZHANG, Yongjie MA. Aerial small target detection algorithm based on context collaborative perception[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(9): 1308

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 25, 2025

    Accepted: --

    Published Online: Sep. 25, 2025

    The Author Email: Hongrui ZHANG (zhanghongrui@tynu.edu.cn)

    DOI:10.37188/CJLCD.2025-0095

    Topics