Journal of Inorganic Materials, Volume. 40, Issue 5, 552(2025)
[1] SU C W, PANG L D, QIN M et al. The spillover effects among fossil fuel, renewables and carbon markets: evidence under the dual dilemma of climate change and energy crises[J]. Energy(2023).
[2] LI Y M, ALHARTHI M, AHMAD I et al. Nexus between renewable energy, natural resources and carbon emissions under the shadow of transboundary trade relationship from South East Asian economies[J]. Energy Strategy Rev.(2022).
[3] PANG L D, ZHU M N, YU H Y et al. Is green finance really a blessing for green technology and carbon efficiency[J]. Energy Econ.(2022).
[4] INDRAWIRAWAN S, SUN H Q, DUAN X G et al. Nanocarbons in different structural dimensions (0-3D) for phenol adsorption and metal-free catalytic oxidation[J]. Appl. Catal. B Environ.(2015).
[5] LIN Y Y, HUNG K Y, LIU F Y et al. Photocatalysts of quaternary composite, bismuth oxyfluoride/bismuth oxyiodide/graphitic carbon nitride: synthesis, characterization, and photocatalytic activity[J]. Mol. Catal.(2022).
[6] ZHANG Z, YANG L, LIU J R et al. Improved oxygen electrocatalysis at FeN4 and CoN4 sites
[7] XU T, DING X T, CHENG H H et al. Moisture-enabled electricity from hygroscopic materials: a new type of clean energy[J]. Adv. Mater.(2023).
[8] MANDAL D, ANDRADA D M. Oil droplets cut to the chase[J]. Nat. Chem.(2020).
[9] NISHIYAMA H, YAMADA T, NAKABAYASHI M et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale[J]. Nature(2021).
[10] TANG D, TAN G L, LI G W et al. State-of-the-art hydrogen generation techniques and storage methods: a critical review[J]. J. Energy Storage(2023).
[11] LI C Q, DU X, JIANG S et al. Constructing direct Z-scheme heterostructure by enwrapping ZnIn2S4 on CdS hollow cube for efficient photocatalytic H2 generation[J]. Adv. Sci.(2022).
[12] HISATOMI T, DOMEN K. Reaction systems for solar hydrogen production
[13] YI S S, ZHANG B X, WULAN B R et al. Non-noble metals applied to solar water splitting[J]. Energy Environ. Sci.(2016).
[14] JIAO Y Y, LI Y K, WANG J S et al. Exfoliation-induced exposure of active sites for g-C3N4/N-doped carbon dots heterojunction to improve hydrogen evolution activity[J]. Mol. Catal.(2020).
[15] CHU X Y, LUAN B B, HUANG A X et al. Controlled synthesis of 2D-2D conductive metal-organic framework/g-C3N4 heterojunctions for efficient photocatalytic hydrogen evolution[J]. Dalton Trans.(2024).
[16] YANG Y, ZHOU C Y, WANG W J et al. Recent advances in application of transition metal phosphides for photocatalytic hydrogen production[J]. Chem. Eng. J.(2021).
[17] SONG B, CHEN M, ZENG G M et al. Using graphdiyne (GDY) as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production: a review[J]. J. Hazard. Mater.(2020).
[18] XIANG Q J, YU J G, JARONIEC M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. J. Am. Chem. Soc.(2012).
[19] XIAO S N, DAI W R, LIU X Y et al. Microwave-induced metal dissolution synthesis of core-shell copper nanowires/ZnS for visible light photocatalytic H2 evolution[J]. Adv. Energy Mater.(2019).
[20] LI H H, WU Y, LI L et al. Adjustable photocatalytic ability of monolayer g-C3N4 utilizing single-metal atom: density functional theory[J]. Appl. Surf. Sci.(2018).
[21] SHANG Y Y, MA Y J, CHEN X et al. Effect of sodium doping on the structure and enhanced photocatalytic hydrogen evolution performance of graphitic carbon nitride[J]. Mol. Catal.(2017).
[22] YE Z W, YUE W H, TAYYAB M et al. Simple one-pot, high-yield synthesis of 2D graphitic carbon nitride nanosheets for photocatalytic hydrogen production[J]. Dalton Trans.(2022).
[23] SHI J Y, ZHANG J, CUI Z W et al.
[24] HUANG X, WU K Y, SU C et al. Metal-organic framework Cu-BTC for overall water splitting: a density functional theory study[J]. Chin. Chem. Lett.(2025).
[25] WANG X C, MAEDA K, THOMAS A et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater.(2009).
[26] YI S S, YAN J M, WULAN B R et al. Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation[J]. Appl. Catal. B Environ.(2017).
[27] HE J J, SUN H Q, INDRAWIRAWAN S et al. Novel polyoxometalate@g-C3N4 hybrid photocatalysts for degradation of dyes and phenolics[J]. J. Colloid Interface Sci.(2015).
[28] LI H H, WU Y, LI C et al. Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction[J]. Appl. Catal. B Environ.(2019).
[29] ZHOU A Q, YANG J M, ZHU X W et al. Self-assembly construction of NiCo LDH/ultrathin g-C3N4 nanosheets photocatalyst for enhanced CO2 reduction and charge separation mechanism study[J]. Rare Met., 2118(2022).
[30] ZHU X W, XU H M, BI C Z et al. Piezo-photocatalysis for efficient charge separation to promote CO2 photoreduction in nanoclusters[J]. Ultrason. Sonochem.(2023).
[31] WU M, YAN J M, TANG X N et al. Synthesis of potassium- modified graphitic carbon nitride with high photocatalytic activity for hydrogen evolution[J]. ChemSusChem(2014).
[32] ZHU Y L, SUN Y Y, KHAN J et al. NaClO-induced sodium-doped cyano-rich graphitic carbon nitride nanosheets with nitrogen vacancies to boost photocatalytic hydrogen peroxide production[J]. Chem. Eng. J.(2022).
[33] ZHAO X L, ZHANG Y G, LI F et al. Salt-air template synthesis of Na and O doped porous graphitic carbon nitride nanorods with exceptional photocatalytic H2 evolution activity[J]. Carbon(2021).
[34] HAN X, KANG Y, SONG S et al. Sodium ion doped graphitic carbon nitride with high crystallinity for superior photocatalytic hydrogen evolution efficiency[J]. J. Mater. Chem. A(2023).
[35] DOU Q, HOU J H, HUSSAIN A et al. One-pot synthesis of sodium-doped willow-shaped graphitic carbon nitride for improved photocatalytic activity under visible-light irradiation[J]. J. Colloid Interface Sci.(2022).
[36] SUN Z Z, TAN Y Y, SHI X K et al. General method to introduce π-electrons into oxygen-doped porous carbon nitride for photocatalytic hydrogen evolution and toluene oxidation[J]. ACS Sustainable Chem. Eng.(2024).
[37] WANG Y X, WANG H, CHEN F Y et al. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis[J]. Appl. Catal. B Environ.(2018).
[38] REN J X, ZHENG Y M, LIN H W et al. Near-infrared light- activated g-C3N4 with effective n → π* electron transition for H2O2 production[J]. Appl. Surf. Sci.(2023).
[39] WU M, HE X, JING B H et al. Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light[J]. J. Hazard. Mater.(2020).
[40] LI Y H, HO W K, LV K L et al. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets[J]. Appl. Surf. Sci.(2018).
[41] LU X J, WANG Y, ZHANG X Y et al. NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary heterostructure for high efficient visible light photodegradation of antibiotic[J]. J. Hazard. Mater.(2018).
[42] HU S Y, YU A C, LU R. A comparison study of sodium ion- and potassium ion-modified graphitic carbon nitride for photocatalytic hydrogen evolution[J]. RSC Adv.(2021).
[43] FANG W J, LIU J Y, YU L et al. Novel (Na, O) co-doped g-C3N4 with simultaneously enhanced absorption and narrowed bandgap for highly efficient hydrogen evolution[J]. Appl. Catal. B Environ.(2017).
[44] MA R D, GUO X, SHI K X et al. S-type heterojunction of MOS2/g-C3N4: construction and photocatalysis[J]. J. Inorg. Mater.(2023).
[45] CHEN X, LI H K, WU Y X et al. Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanced visible light driven photocatalytic performance[J]. J. Colloid Interface Sci.(2016).
[46] KRÖGER J, JIMÉNEZ‐SOLANO A, SAVASCI G et al. Interfacial engineering for improved photocatalysis in a charge storing 2D carbon nitride: melamine functionalized poly(heptazine imide)[J]. Adv. Energy Mater.(2021).
[47] LIU M Q, JIAO Y Y, QIN J C et al. Boron doped C3N4 nanodots/ nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance[J]. Appl. Surf. Sci.(2021).
[48] YANG C W, XUE Z, QIN J Q et al. Heterogeneous structural defects to prompt charge shuttle in g-C3N4 plane for boosting visible-light photocatalytic activity[J]. Appl. Catal. B Environ.(2019).
[49] SHI L, LIU G, ZHANG Y H et al. Na, O co-doping and cyano groups synergistically adjust the band structure of g-C3N4 for improving photocatalytic oxygen evolution[J]. Mater. Res. Bull.(2023).
[50] GU J, CHEN H, JIANG F et al. Visible light photocatalytic mineralization of bisphenol A by carbon and oxygen dual-doped graphitic carbon nitride[J]. J. Colloid Interface Sci.(2019).
[51] IQBAL O, ALI H, LI N et al. A review on the synthesis, properties, and characterizations of graphitic carbon nitride (g-C3N4) for energy conversion and storage applications[J]. Mater. Today Phys.(2023).
[52] OU H H, LIN L H, ZHENG Y et al. Tri-
[53] ZHOU J, YANG Y, ZHANG C Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission[J]. Chem. Commun.(2013).
[54] ZHANG Y Z, ZONG S C, CHENG C et al. One-pot annealing preparation of Na-doped graphitic carbon nitride from melamine and organometallic sodium salt for enhanced photocatalytic H2 evolution[J]. Int. J. Hydrog. Energy(2018).
[55] GUO F, CHEN J L, ZHANG M W et al. Deprotonation of g-C3N4 with Na ions for efficient nonsacrificial water splitting under visible light[J]. J. Mater. Chem. A(2016).
[56] WU M, CHEN L B, LUO X et al. Defective carbon nitride with dual-surface engineering for highly efficient photocatalytic hydrogen evolution under visible light irradiation[J]. Langmuir(2024).
[57] MAKUŁA P, PACIA M, MACYK W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra[J]. J. Phys. Chem. Lett.(2018).
[58] YU H J, SHI R, ZHAO Y X et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J]. Adv. Mater.(2017).
[59] WULANA B R, YI S S, LI S J et al. Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting[J]. Appl. Catal. B Environ.(2018).
Get Citation
Copy Citation Text
Libo CHEN, Ying SHENG, Ming WU, Jiling SONG, Jian JIAN, Erhong SONG.
Category:
Received: Jul. 20, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Ming WU (wuming10@mails.jlu.edu.cn), Erhong SONG (ehsong@mail.sic.ac.cn)