Laser & Optoelectronics Progress, Volume. 62, Issue 14, 1417004(2025)

State-Space Enhanced Grading of Prostate Cancer Pathological Images

Chaoyun Mai1, Qianwen Wang1, Runqiang Yuan2、*, Zhipeng Mai3, Chuanbo Qin1, Junying Zeng1, Weigang Yan3, and Yu Xiao4
Author Affiliations
  • 1School of Electronics and Information Engineering, Wuyi University, Jiangmen 529020, Guangdong , China
  • 2Department of Urology, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong , China
  • 3Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing , 100730, China
  • 4Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing , 100730, China
  • show less
    Figures & Tables(14)
    Overall network architecture of SKAN-MIL. (a) WSI preprocessing; (b) overall framework; (c) MP-Mamba module
    KAN module
    Division of training sets and test sets of different datasets. (a) PUMCH; (b) PANDA
    ROC curve performances of SKAN-MIL model under different Gleason grades. (a) PUMCH; (b) PANDA
    Accuracy radar charts for different methods on two datasets for each Gleason grade. (a) PUMCH; (b) PANDA
    Confusion matrices for PUMCH and PANDA and normalized results. (a) Gleason grade confusion matrix of PUMCH; (b) Gleason grade confusion matrix of PANDA; (c) normalized results of PUMCH; (d) normalized results of PANDA
    WSI heatmap visualization results on the PUMCH and PANDA
    • Table 1. Number of WSI and the distribution of Gleason grade in the PUMCH and PANDA

      View table

      Table 1. Number of WSI and the distribution of Gleason grade in the PUMCH and PANDA

      Gleason gradePUMCHPANDA
      Benign23032805
      GG 13022610
      GG 26751321
      GG 31731215
      GG 4531198
      GG 52691184
      Total377510333
    • Table 2. Comparison of classification performance of different methods on the PUMCH

      View table

      Table 2. Comparison of classification performance of different methods on the PUMCH

      MethodAUCAccuracy
      Maxpool88.28±0.4979.63±0.31
      Meanpool83.87±1.1775.54±0.43
      ABMIL1286.51±0.4874.06±0.26
      CLAM_SB1385.54±0.8680.32±0.91
      CLAM_MB1378.23±2.3672.89±2.06
      DSMIL1487.83±0.1976.76±0.36
      TransMIL1888.43±1.3976.61±1.41
      Proposed93.18±0.5784.14±0.70
    • Table 3. Comparison of classification performance of different methods on the PANDA

      View table

      Table 3. Comparison of classification performance of different methods on the PANDA

      MethodAUCAccuracy
      Maxpool88.22±0.0662.08±0.98
      Meanpool83.05±0.0550.96±0.30
      ABMIL1271.45±3.7638.90±4.27
      CLAM_SB1387.95±0.0962.29±0.49
      CLAM_MB1385.77±0.2058.02±0.84
      DSMIL1486.07±0.0656.97±0.53
      TransMIL1885.38±0.4558.39±1.23
      Proposed89.50±0.3363.92±1.19
    • Table 4. AUC of different methods for each Gleason grade on the PUMCH

      View table

      Table 4. AUC of different methods for each Gleason grade on the PUMCH

      MethodBenignGG 1GG 2GG 3GG 4GG 5
      Maxpool96.88±0.0989.47±0.5989.39±0.0787.68±0.7969.82±3.3396.47±0.11
      Meanpool96.03±0.6183.50±5.2888.74±1.4186.03±3.0280.56±5.2195.73±1.56
      ABMIL1294.48±0.2183.81±1.9586.36±0.5082.65±2.1785.49±1.6587.12±0.13
      CLAM_SB1398.06±0.3291.22±0.5690.31±0.1792.63±0.6640.03±6.6795.78±0.69
      CLAM_MB1395.18±0.6181.06±1.7383.81±1.6279.90±1.6838.53±15.8885.74±1.20
      DSMIL1495.71±0.0384.82±0.8786.60±0.1288.18±0.5580.68±0.7793.00±0.16
      TransMIL1896.03±0.6183.50±5.2888.74±1.4186.03±3.0280.56±5.2195.73±1.56
      Proposed98.11±0.6889.28±1.4191.18±2.2793.18±2.2787.29±3.5897.19±1.63
    • Table 5. AUC of different methods for each Gleason grade on the PANDA

      View table

      Table 5. AUC of different methods for each Gleason grade on the PANDA

      MethodBenignGG 1GG 2GG 3GG 4GG 5
      Maxpool94.04±0.0487.81±0.2083.41±0.1981.56±0.3389.18±0.3493.45±0.26
      Meanpool86.89±0.1277.97±0.2076.87±0.1979.55±0.1485.59±0.0891.44±0.08
      ABMIL1280.58±2.3065.62±5.2261.10±6.7671.30±1.2771.84±4.0978.33±3.00
      CLAM_SB1394.97±0.2487.22±0.3483.38±0.4380.69±0.3888.09±0.1493.36±0.26
      CLAM_MB1393.14±0.3884.89±0.1081.40±1.3079.02±0.4483.96±0.8891.04±0.41
      DSMIL1492.16±0.0883.37±0.0785.52±0.1378.50±0.0887.33±0.0392.56±0.13
      TransMIL1893.35±0.6884.87±0.4078.83±1.5779.56±1.5985.12±1.1491.17±1.22
      Proposed95.81±0.2689.59±0.2985.81±1.1383.42±1.0589.10±0.7493.84±0.55
    • Table 6. Ablation experiment of different modules on the PUMCH and PANDA

      View table

      Table 6. Ablation experiment of different modules on the PUMCH and PANDA

      ModelMP-MambaKANPUMCHPANDA
      AUCAccuracyAUCAccuracy
      1××83.56±0.3576.76±0.2086.59±0.2057.65±1.36
      2×92.32±1.1283.69±1.1089.38±0.3763.36±1.71
      393.18±0.5784.14±0.7089.50±0.3363.92±1.19
    • Table 7. Experimental results of baseline model with different Mamba modules

      View table

      Table 7. Experimental results of baseline model with different Mamba modules

      ModulePUMCHPANDA
      AUCAccuracyAUCAccuracy
      Baseline83.56±0.3576.76±0.2086.59±0.2057.65±1.36
      Mamba90.49±0.8982.30±0.1088.68±0.2062.49±1.54
      Bi-Mamba91.72±0.7082.56±1.5488.72±0.1363.07±0.28
      VMamba91.06±0.8082.78±1.1088.90±0.2563.12±1.25
      MP-Mamba92.32±1.1283.69±1.1089.38±0.3763.36±1.71
    Tools

    Get Citation

    Copy Citation Text

    Chaoyun Mai, Qianwen Wang, Runqiang Yuan, Zhipeng Mai, Chuanbo Qin, Junying Zeng, Weigang Yan, Yu Xiao. State-Space Enhanced Grading of Prostate Cancer Pathological Images[J]. Laser & Optoelectronics Progress, 2025, 62(14): 1417004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Dec. 19, 2024

    Accepted: Feb. 28, 2025

    Published Online: Jul. 2, 2025

    The Author Email: Runqiang Yuan (yuanrunqiang11@126.com)

    DOI:10.3788/LOP242448

    CSTR:32186.14.LOP242448

    Topics