Chinese Journal of Lasers, Volume. 49, Issue 15, 1507104(2022)
Two-Photon Photodynamic Therapy Using Nucleolus-Targeted Carbon Dots
[1] Carelle N, Piotto E, Bellanger A et al. Changing patient perceptions of the side effects of cancer chemotherapy[J]. Cancer, 95, 155-163(2002).
[2] Browning R J, Reardon P J T, Parhizkar M et al. Drug delivery strategies for platinum-based chemotherapy[J]. ACS Nano, 11, 8560-8578(2017).
[3] Bruheim K, Guren M G, Skovlund E et al. Late side effects and quality of life after radiotherapy for rectal cancer[J]. International Journal of Radiation Oncology Biology Physics, 76, 1005-1011(2010).
[4] Chang-Claude J, Popanda O, Tan X L et al. Association between polymorphisms in the DNA repair genes, XRCC1, APE1, and XPD and acute side effects of radiotherapy in breast cancer patients[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 11, 4802-4809(2005).
[5] Dolmans D E J G J, Fukumura D, Jain R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 3, 380-387(2003).
[6] Castano A P, Mroz P, Hamblin M R. Photodynamic therapy and anti-tumour immunity[J]. Nature Reviews Cancer, 6, 535-545(2006).
[7] Huang Y X, Xu H, Luan P et al. Label-free imaging of β-amyloid plaques and photodynamic degradation[J]. Chinese Journal of Lasers, 47, 0207029(2020).
[8] MacDonald I J, Dougherty T J. Basic principles of photodynamic therapy[J]. Journal of Porphyrins and Phthalocyanines, 5, 105-129(2001).
[9] Alfadda A A, Sallam R M. Reactive oxygen species in health and disease[J]. Journal of Biomedicine & Biotechnology, 2012, 936486(2012).
[10] Railkar R, Agarwal P K. Photodynamic therapy in the treatment of bladder cancer: past challenges and current innovations[J]. European Urology Focus, 4, 509-511(2018).
[11] Usuda J, Kato H, Okunaka T et al. Photodynamic therapy (PDT) for lung cancers[J]. Journal of Thoracic Oncology, 1, 489-493(2006).
[12] Agostinis P, Berg K, Cengel K A et al. Photodynamic therapy of cancer: an update[J]. CA: a Cancer Journal for Clinicians, 61, 250-281(2011).
[13] de Freitas L F, Hamblin M R. Antimicrobial photoinactivation with functionalized fullerenes[M]. Grumezescu A M. Nanobiomaterials in antimicrobial therapy, 1-27(2016).
[14] Skovsen E, Snyder J W, Lambert J D C et al. Lifetime and diffusion of singlet oxygen in a cell[J]. The Journal of Physical Chemistry B, 109, 8570-8573(2005).
[15] Lin L Y, Pang W, Jiang X Y et al. Light amplified oxidative stress in tumor microenvironment by carbonized hemin nanoparticles for boosting photodynamic anticancer therapy[J]. Light: Science & Applications, 11, 1-16(2022).
[16] Zhou Z J, Song J B, Nie L M et al. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy[J]. Chemical Society Reviews, 45, 6597-6626(2016).
[17] Xie L N, Gao C Y, Wang Q et al. Research progress of photodynamic therapy based on Cherenkov radiation for tumors[J]. Laser & Optoelectronics Progress, 57, 190002(2020).
[18] Li Y, Wang X H, Li Y Y et al. Drug-loaded platform based on metal-organic framework for photodynamic ablation of breast cancer cells[J]. Laser & Optoelectronics Progress, 58, 1417002(2021).
[19] Wu W, Mao D, Hu F et al. A highly efficient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy[J]. Advanced Materials, 29, 1700548(2017).
[20] Zhu H J, Li J C, Qi X Y et al. Oxygenic hybrid semiconducting nanoparticles for enhanced photodynamic therapy[J]. Nano Letters, 18, 586-594(2018).
[21] Ge J, Lan M, Zhou B et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation[J]. Nature Communications, 5, 4596(2014).
[22] Lü W, Zhang Z, Zhang K Y et al. A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia[J]. Angewandte Chemie (International Ed. in English), 55, 9947-9951(2016).
[23] Zhang D Y, Zheng Y, Zhang H et al. Ruthenium complex-modified carbon nanodots for lysosome-targeted one- and two-photon imaging and photodynamic therapy[J]. Nanoscale, 9, 18966-18976(2017).
[24] Li W, Yang J, Luo L et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death[J]. Nature Communications, 10, 3349(2019).
[25] Tan W Y, Zhang Q X, Wang J Q et al. Enzymatic assemblies of thiophosphopeptides instantly target Golgi apparatus and selectively kill cancer cells[J]. Angewandte Chemie (International Ed. in English), 60, 12796-12801(2021).
[26] Pang W, Jiang P F, Ding S H et al. Nucleolus-targeted photodynamic anticancer therapy using renal-clearable carbon dots[J]. Advanced Healthcare Materials, 9, e2000607(2020).
[27] DeRosa M C, Crutchley R J. Photosensitized singlet oxygen and its applications[J]. Coordination Chemistry Reviews, 233/234, 351-371(2002).
[28] Gu B B, Yong K T, Liu B. Strategies to overcome the limitations of AIEgens in biomedical applications[J]. Small Methods, 2, 1700392(2018).
[29] Lin L, Li B H. Application progress of light-emitting diode for photodynamic therapy[J]. Laser & Optoelectronics Progress, 57, 150001(2020).
[30] Bhawalkar J D, Kumar N D, Zhao C F et al. Two-photon photodynamic therapy[J]. Journal of Clinical Laser Medicine & Surgery, 15, 201-204(1997).
[31] Gu B, Wu W, Xu G et al. Precise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristics[J]. Advanced Materials, 29, 1701076(2017).
[32] Huang H Y, Yu B L, Zhang P Y et al. Highly charged ruthenium(II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy[J]. Angewandte Chemie (International Ed. in English), 54, 14049-14052(2015).
[33] Collins H A, Khurana M, Moriyama E H et al. Blood-vessel closure using photosensitizers engineered for two-photon excitation[J]. Nature Photonics, 2, 420-424(2008).
[34] Gary-Bobo M, Mir Y, Rouxel C et al. Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors[J]. Angewandte Chemie (International Ed. in English), 50, 11425-11429(2011).
[35] Zou Q L, Zhao H Y, Zhao Y X et al. Effective two-photon excited photodynamic therapy of xenograft tumors sensitized by water-soluble bis(arylidene)cycloalkanone photosensitizers[J]. Journal of Medicinal Chemistry, 58, 7949-7958(2015).
[36] Mijatovic T, de Nève N, Gailly P et al. Nucleolus and c-Myc: potential targets of cardenolide-mediated antitumor activity[J]. Molecular Cancer Therapeutics, 7, 1285-1296(2008).
[37] Hua X W, Bao Y W, Wu F G. Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery[J]. ACS Applied Materials & Interfaces, 10, 10664-10677(2018).
[38] Tian X H, Zhu Y Z, Zhang M Z et al. Localization matters: a nuclear targeting two-photon absorption iridium complex in photodynamic therapy[J]. Chemical Communications, 53, 3303-3306(2017).
[39] Nasrin A, Hassan M, Gomes V G. Two-photon active nucleus-targeting carbon dots: enhanced ROS generation and photodynamic therapy for oral cancer[J]. Nanoscale, 12, 20598-20603(2020).
[40] Pan L M, Liu J N, Shi J L. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics[J]. Chemical Society Reviews, 47, 6930-6946(2018).
[41] Panwar N, Soehartono A M, Chan K K et al. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery[J]. Chemical Reviews, 119, 9559-9656(2019).
[42] Tong G S, Wang J X, Wang R B et al. Amorphous carbon dots with high two-photon fluorescence for cellular imaging passivated by hyperbranched poly(amino amine)[J]. Journal of Materials Chemistry B, 3, 700-706(2015).
[43] Han R C, Zhao M, Wang Z W et al. Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer[J]. ACS Nano, 14, 9532-9544(2020).
[44] He X J, Bo S T, Gao M et al. Stereotactic photodynamic therapy using a two-photon AIE photosensitizer[J]. Small, 15, e1905080(2019).
[45] Wang S W, Chen H, Liu J et al. NIR-II light activated photosensitizer with aggregation-induced emission for precise and efficient two-photon photodynamic cancer cell ablation[J]. Advanced Functional Materials, 30, 2002546(2020).
[46] Lesani P, Mohamad Hadi A H, Lu Z et al. Design principles and biological applications of red-emissive two-photon carbon dots[J]. Communications Materials, 2, 108(2021).
Get Citation
Copy Citation Text
Man Lei, Wen Pang, Bo Shi, Chen Wang, Dan Wang, Xunbin Wei, Bobo Gu. Two-Photon Photodynamic Therapy Using Nucleolus-Targeted Carbon Dots[J]. Chinese Journal of Lasers, 2022, 49(15): 1507104
Category: Optical Diagnostics and Therapy
Received: Nov. 29, 2021
Accepted: Feb. 11, 2022
Published Online: Jul. 29, 2022
The Author Email: Gu Bobo (bobogu@sjtu.edu.cn)