Acta Optica Sinica, Volume. 43, Issue 6, 0610002(2023)

Synthetic Aperture Radar Image Denoising Algorithm Based on Deep Learning

Xiangwei Fu1, Huilin Shan1,2、*, Lü Zongkui1, and Xingtao Wang2
Author Affiliations
  • 1School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • 2School of Electronic & Information Engineering, Wuxi University, Wuxi 214105, Jiangsu, China
  • show less
    Figures & Tables(14)
    Schematic diagram of asymmetric convolution kernel
    Architecture of CBAM
    Architecture of DCB
    Architecture of MALNet
    Loss curve of training model
    PSNR values ​​of different DCB layers under different modes. (a) Single background image; (b) multiple background image
    Denoising effect comparison of airport image. (a) Original image; (b) noisy image; (c) denoised image obtained by WNNM; (d) denoised image obtained by SAR-BM3D; (e) denoised image obtained by SAR-CNN; (f) denoised image obtained by MALNet
    Denoising effect comparison of coast image. (a) Original image; (b) noisy image; (c) denoised image obtained by WNNM; (d) denoised image obtained by SAR-BM3D; (e) denoised image obtained by SAR-CNN; (f) denoised image obtained by MALNet
    Denoising effect comparison of mountain image. (a) Original image; (b) noisy image; (c) denoised image obtained by WNNM; (d) denoised image obtained by SAR-BM3D; (e) denoised image obtained by SAR-CNN; (f) denoised image obtained by MALNet
    • Table 1. Structural parameters of MALNet

      View table

      Table 1. Structural parameters of MALNet

      LocalKernel sizeStridePaddingChannelPooling
      [F0F(1)]15×51264
      [F0F(1)]23×11(1,0)64
      [F0F(1)]31×31(0,1)64
      [F0F(1)]43×31164
      F(1)3×31132
      F(2)32
      X03×31132
      X1X23×31132
      X2X33×31132
      X3X43×31132AvgPool(2×2)
      X0X43×31132MaxPool(3×3)
      F(3)64
      F(4)3×3111
    • Table 2. Parameters of experimental platform

      View table

      Table 2. Parameters of experimental platform

      HardwareDescription
      CPU12th Gen intel(R)Core(TM)i9-12900KF @ 3.19 GHz
      GPUNVIDIA GeForce RTX 3090
      Memory32 GB
      SystemWindows 10
      Video memory24 GB
      Language frameworkAnconda + Python3.8.13 + Pytorch1.11.0
    • Table 3. Denoising level (PSNR) of each algorithm for each type of SAR image under different noise levels

      View table

      Table 3. Denoising level (PSNR) of each algorithm for each type of SAR image under different noise levels

      ImageσWNNMSAR-BM3DSAR-CNNMALNet
      Airport2028.8729.2831.8533.42
      3026.6227.1330.1431.11
      4026.3526.5229.8629.97
      4525.2825.9327.7729.31
      5025.1724.0127.6727.82
      Mountain2028.1529.1331.1033.76
      3026.5327.6530.0331.17
      4025.7226.0428.5329.59
      4525.1425.9927.1727.85
      5024.0525.9227.3126.62
      Coast2028.2230.2131.0133.83
      3026.6328.5229.4331.58
      4026.5527.7328.5929.98
      4525.3926.2426.8728.93
      5024.3725.5526.1226.11
    • Table 4. Denoising level (SSIM) of each algorithm for each type of SAR image under different noise levels

      View table

      Table 4. Denoising level (SSIM) of each algorithm for each type of SAR image under different noise levels

      ImageσWNNMSAR-BM3DSAR-CNNMALNet
      Airport200.79290.83240.89230.9257
      300.75380.78260.86210.8969
      400.70630.75050.86690.8671
      450.68180.68670.79260.8309
      500.68210.60270.78180.7892
      Mountain200.78670.83540.90120.9354
      300.71280.78910.90100.9194
      400.69570.74970.87250.8963
      450.67080.71340.79710.8361
      500.66840.68080.82110.7655
      Coast200.79110.85610.90360.9253
      300.71870.78990.89470.8987
      400.70640.75870.88090.8827
      450.68170.73080.74370.8817
      500.65120.69150.70180.7939
    • Table 5. Image entropy of each algorithm for each type of SAR image under different noise levels unit: bitpixel-1

      View table

      Table 5. Image entropy of each algorithm for each type of SAR image under different noise levels unit: bitpixel-1

      ImageσWNNMSAR-BM3DSAR-CNNMALNet
      Airport206.53126.31126.85296.1879
      306.82546.77097.29646.3542
      407.15966.96067.59766.8793
      457.31777.23187.21516.9074
      507.83257.63217.46477.5258
      Mountain206.42196.38647.01586.0872
      306.82976.59137.24796.3173
      407.35417.12917.89316.7966
      457.56277.39457.93156.9037
      507.98617.48378.01477.5813
      Coastal206.52076.21866.96156.2157
      306.78966.45177.35416.7959
      407.15846.95267.79876.8394
      457.69837.01187.84247.0288
      507.95277.31897.89517.8198
    Tools

    Get Citation

    Copy Citation Text

    Xiangwei Fu, Huilin Shan, Lü Zongkui, Xingtao Wang. Synthetic Aperture Radar Image Denoising Algorithm Based on Deep Learning[J]. Acta Optica Sinica, 2023, 43(6): 0610002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 7, 2022

    Accepted: Aug. 25, 2022

    Published Online: Mar. 13, 2023

    The Author Email: Shan Huilin (shanhuilin@nuist.edu.cn)

    DOI:10.3788/AOS221437

    Topics