Photonics Research, Volume. 10, Issue 8, 1868(2022)

Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components

Rui Shao1, Gong Zhang1,2、*, and Xiao Gong1,3、*
Author Affiliations
  • 1Department of Electrical & Computer Engineering, National University of Singapore, Singapore, Singapore
  • 2e-mail: zhanggong@nus.edu.sg
  • 3e-mail: elegong@nus.edu.sg
  • show less
    References(63)

    [1] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [2] J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, D. Brunner. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 5, 756-760(2018).

    [3] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [4] J. Robertson, M. Hejda, J. Bueno, A. Hurtado. Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons. Sci. Rep., 10, 6098(2020).

    [5] N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics, 11, 447-452(2017).

    [6] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [7] B. Shi, N. Calabretta, R. Stabile. Deep neural network through an InP SOA-based photonic integrated cross-connect. IEEE J. Sel. Top. Quantum Electron., 26, 7701111(2019).

    [8] N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing. Linear programmable nanophotonic processors. Optica, 5, 1623-1631(2018).

    [9] L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, A. J. Lowery. Programmable photonic signal processor chip for radiofrequency applications. Optica, 2, 854-859(2015).

    [10] J. Notaros, J. Mower, M. Heuck, C. Lupo, N. C. Harris, G. R. Steinbrecher, D. Bunandar, T. Baehr-Jones, M. Hochberg, S. Lloyd. Programmable dispersion on a photonic integrated circuit for classical and quantum applications. Opt. Express, 25, 21275-21285(2017).

    [11] C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen. 8×8 programmable quantum photonic processor based on silicon nitride waveguides. Frontiers in Optics 2018, JTu3A.58(2018).

    [12] D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, J. Capmany. Multipurpose silicon photonics signal processor core. Nat. Commun., 8, 636(2017).

    [13] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [14] Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, S. Du. All-optical neural network with nonlinear activation functions. Optica, 6, 1132-1137(2019).

    [15] T.-Y. Cheng, D.-Y. Chou, C.-C. Liu, Y.-J. Chang, C.-C. Chen. Optical neural networks based on optical fiber-communication system. Neurocomputing, 364, 239-244(2019).

    [16] R. Stabile, G. Dabos, C. Vagionas, B. Shi, N. Calabretta, N. Pleros. Neuromorphic photonics: 2D or not 2D?. J. Appl. Phys., 129, 200901(2021).

    [17] X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics, 12, 534-539(2018).

    [18] M. Teng, A. Honardoost, Y. Alahmadi, S. S. Polkoo, K. Kojima, H. Wen, C. K. Renshaw, P. LiKamWa, G. Li, S. Fathpour. Miniaturized silicon photonics devices for integrated optical signal processors. J. Lightwave Technol., 38, 6-17(2020).

    [19] C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, F. Boeuf. Developments in 300 mm silicon photonics using traditional CMOS fabrication methods and materials. IEEE International Electron Devices Meeting, 34.33.31-34.33.34(2017).

    [20] D. P. López. Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms. IEEE J. Sel. Top. Quantum Electron., 26, 8301312(2019).

    [21] H. Zhang, M. Gu, X. D. Jiang, J. Thompson, H. Cai, S. Paesani, R. Santagati, A. Laing, Y. Zhang, M. H. Yung, Y. Z. Shi, F. K. Muhammad, G. Q. Lo, X. S. Luo, B. Dong, D. L. Kwong, L. C. Kwek, A. Q. Liu. An optical neural chip for implementing complex-valued neural network. Nat. Commun., 12, 457(2021).

    [22] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Solja. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [23] J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh. Universal linear optics. Science, 349, 711-716(2015).

    [24] A. Ribeiro, A. Ruocco, L. Vanacker, W. Bogaerts. Demonstration of a 4×4-port universal linear circuit. Optica, 3, 1348-1357(2016).

    [25] P. L. Mennea, W. R. Clements, D. H. Smith, J. C. Gates, B. J. Metcalf, R. H. S. Bannerman, R. Burgwal, J. J. Renema, W. S. Kolthammer, I. A. Walmsley. Modular linear optical circuits. Optica, 5, 1087-1090(2018).

    [26] D. Pérez-López, E. Sánchez, J. Capmany. Programmable true time delay lines using integrated waveguide meshes. J. Lightwave Technol., 36, 4591-4601(2018).

    [27] A. N. Tait, A. X. Wu, T. F. De Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, P. R. Prucnal. Microring weight banks. IEEE J. Sel. Top. Quantum Electron., 22, 312-325(2016).

    [28] S. Ohno, K. Toprasertpong, S. Takagi, M. Takenaka. Si microring resonator crossbar array for on-chip inference and training of optical neural network(2021).

    [29] F. Denis-Le Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, D. Rontani. All-optical reservoir computing on a photonic chip using silicon-based ring resonators. IEEE J. Sel. Top. Quantum Electron., 24, 7600108(2018).

    [30] S. Ohno, K. Toprasertpong, S. Takagi, M. Takenaka. Demonstration of classification task using optical neural network based on Si microring resonator crossbar array. European Conference on Optical Communications (ECOC), 1-4(2020).

    [31] F. Shokraneh, S. Geoffroy-Gagnon, M. S. Nezami, O. Liboiron-Ladouceur. A single layer neural network implemented by a 4 × 4 MZI-based optical processor. IEEE Photon. J., 11, 4501612(2019).

    [32] Y. Jiang, W. Zhang, F. Yang, Z. He. Photonic convolution neural network based on interleaved time-wavelength modulation. J. Lightwave Technol., 39, 4592-4600(2021).

    [33] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti, A. Mitchell, D. J. Moss. 11 TeraFLOPs per second photonic convolutional accelerator for deep learning optical neural networks(2020).

    [34] G. Mourgias-Alexandris, G. Dabos, N. Passalis, A. Totovic, A. Tefas, N. Pleros. All-optical WDM recurrent neural networks with gating. IEEE J. Sel. Top. Quantum Electron., 26, 6100907(2020).

    [35] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, I. Jex. Using an imperfect photonic network to implement random unitaries. Phys. Rev. Lett., 119, 170501(2017).

    [36] S. Pai, B. Bartlett, O. Solgaard, D. A. B. Miller. Matrix optimization on universal unitary photonic devices. Phys. Rev. Appl., 11, 064044(2019).

    [37] D. A. B. Miller. Perfect optics with imperfect components. Optica, 2, 747-750(2015).

    [38] F. Shokraneh, S. Geoffroy-Gagnon, O. Liboiron-Ladouceur. The diamond mesh, a phase-error- and loss-tolerant field-programmable MZI-based optical processor for optical neural networks. Opt. Express, 28, 23495-23508(2020).

    [39] M. Y. S. Fang, S. Manipatruni, C. Wierzynski, A. Khosrowshahi, M. R. DeWeese. Design of optical neural networks with component imprecisions. Opt. Express, 27, 14009-14029(2019).

    [40] T. W. Hughes, M. Minkov, Y. Shi, S. Fan. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica, 5, 864-871(2018).

    [41] R. Hamerly, S. Bandyopadhyay, D. Englund. “Accurate self-configuration of rectangular multiport interferometers(2021).

    [42] S. Bandyopadhyay, R. Hamerly, D. Englund. Hardware error correction for programmable photonics. Optica, 8, 1247-1255(2021).

    [43] R. Hamerly, S. Bandyopadhyay, D. Englund. Robust zero-change self-configuration of the rectangular mesh. Optical Fiber Communication Conference, Tu5H.2(2021).

    [44] A. Asuncion, D. Newman. UCI Machine Learning Repository(2007).

    [45] L. Deng. The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag., 29, 141-142(2012).

    [46] N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, C. Galland. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express, 22, 10487-10493(2014).

    [47] B. Yurke, S. L. McCall, J. R. Klauder. SU(2) and SU(1,1) interferometers. Phys. Rev. A, 33, 4033-4054(1986).

    [48] M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73, 58-61(1994).

    [49] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, I. A. Walmsley. Optimal design for universal multiport interferometers. Optica, 3, 1460-1465(2016).

    [50] F. Shokraneh, M. S. Nezami, O. Liboiron-Ladouceur. Theoretical and experimental analysis of a 4 × 4 reconfigurable MZI-based linear optical processor. J. Lightwave Technol., 38, 1258-1267(2020).

    [51] I. A. D. Williamson, T. W. Hughes, M. Minkov, B. Bartlett, S. Pai, S. Fan. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 7700412(2020).

    [52] Y. Zhu, G. L. Zhang, B. Li, X. Yin, C. Zhuo, H. Gu, T.-Y. Ho, U. Schlichtmann. Countering variations and thermal effects for accurate optical neural networks. IEEE/ACM International Conference on Computer-Aided Design, 1-7(2020).

    [53] I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, M. G. Thompson. On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics. Opt. Express, 26, 20379-20395(2018).

    [54] S. V. Reddy Chittamuru, I. G. Thakkar, S. Pasricha. Analyzing voltage bias and temperature induced aging effects in photonic interconnects for manycore computing. ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP), 1-8(2017).

    [55] H. Zhang, J. Thompson, M. Gu, X. D. Jiang, H. Cai, P. Y. Liu, Y. Shi, Y. Zhang, M. F. Karim, G. Q. Lo, X. Luo, B. Dong, L. C. Kwek, A. Q. Liu. Efficient on-chip training of optical neural networks using genetic algorithm. ACS Photon., 8, 1662-1672(2021).

    [56] P. Cerda, G. Varoquaux, B. Kégl. Similarity encoding for learning with dirty categorical variables. Mach. Learn., 107, 1477-1494(2018).

    [58] J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, J. E. Bowers. Silicon on ultra-low-loss waveguide photonic integration platform. Opt. Express, 21, 544-555(2013).

    [59] S. Chen, H. Wu, D. Dai. High extinction-ratio compact polarisation beam splitter on silicon. Electron. Lett., 52, 1043-1045(2016).

    [60] T. Zhang, J. Wang, Y. Dan, Y. Lanqiu, J. Dai, X. Han, X. Sun, K. Xu. Efficient training and design of photonic neural network through neuroevolution. Opt. Express, 27, 37150-37163(2019).

    [61] B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates. Quantum teleportation on a photonic chip. Nat. Photonics, 8, 770-774(2014).

    [62] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, P. Mataloni. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics, 7, 322-328(2013).

    [63] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu. Quantum computational advantage using photons. Science, 370, 1460-1463(2020).

    Tools

    Get Citation

    Copy Citation Text

    Rui Shao, Gong Zhang, Xiao Gong, "Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components," Photonics Res. 10, 1868 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation and Measurements

    Received: Dec. 3, 2021

    Accepted: Mar. 18, 2022

    Published Online: Jul. 21, 2022

    The Author Email: Gong Zhang (zhanggong@nus.edu.sg), Xiao Gong (elegong@nus.edu.sg)

    DOI:10.1364/PRJ.449570

    Topics