Laser & Optoelectronics Progress, Volume. 57, Issue 22, 221019(2020)

Forgery Numeral Handwriting Detection Based on Fire Module Convolutional Neural Network

Ying Chen and Shuhui Gao*
Author Affiliations
  • School of Criminal Investigation and Forensic Science, People's Public Security University of China, Beijing 100038, China
  • show less
    Figures & Tables(11)
    Fire Module structure
    Network structure. (a) FNNet structure; (b) AlexNet structure
    Part dataset examples. (a) Normal samples; (b) forgery samples
    ROC curves of six forged figures
    Comparison of test accuracy between FNNet and AlexNet
    Test accuracy of FNNet and other algorithms
    • Table 1. Dimension parameters of FNNet

      View table

      Table 1. Dimension parameters of FNNet

      Layer nameOutput sizeFilter size/strides1×1e1×1e3×3Dimension
      Input image224×224×3
      Conv154×54×9611×11/434,944
      Maxpool127×27×963×3/2
      Fire227×27×2563212812844,320
      Fire327×27×38448192192104,880
      Fire427×27×38448192192111,024
      Fire527×27×51264256256188,992
      Maxpool513×13×5123×3/2
      Fire613×13×51264256256197,184
      Conv715×15×2561×1/1131,328
      Maxpool77×7×2563×3/2
      FC87×7×100012,545,000
      FC91×1×22002
    • Table 2. Composition of dataset

      View table

      Table 2. Composition of dataset

      Dataset346789
      Normal handwriting540593599599604597
      Forgery handwriting621612616614600614
    • Table 3. Classification and loss performances of number of neurons in fully connected layer

      View table

      Table 3. Classification and loss performances of number of neurons in fully connected layer

      Parameter50010002000
      Test accuracy /%95.2896.3293.98
      Loss value0.140.110.25
      Train time /min131314
    • Table 4. Results of training and testing of proposed network

      View table

      Table 4. Results of training and testing of proposed network

      ForgerynumeralTrainaccuracy /%LossvalueTestaccuracy /%
      399.600.0399.20
      496.400.1196.32
      698.400.0798.32
      798.400.0498.72
      899.200.0199.60
      997.800.0698.00
    • Table 5. Parameter comparison of FNNet and AlexNet

      View table

      Table 5. Parameter comparison of FNNet and AlexNet

      NetworkMean test accuracy /%Parameter quantity
      AlexNet95.3558,289,538
      FNNet98.3613,228,346
    Tools

    Get Citation

    Copy Citation Text

    Ying Chen, Shuhui Gao. Forgery Numeral Handwriting Detection Based on Fire Module Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221019

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Feb. 27, 2020

    Accepted: Apr. 27, 2020

    Published Online: Nov. 5, 2020

    The Author Email: Shuhui Gao (gaoshuhui@ppsuc.edu.cn)

    DOI:10.3788/LOP57.221019

    Topics