Chinese Optics Letters, Volume. 20, Issue 6, 061401(2022)
1.65 µm square-FP coupled cavity semiconductor laser for methane gas detection Editors' Pick
[1] D. F. Swineharf. The Beer–Lambert law. J. Chem. Educ., 39, 333(1962).
[2] P. Werle. A review of recent advances in semiconductor laser based gas monitors. Spectrochim. Acta A Mol. Biomol. Spectrosc., 54, 197(1998).
[3] P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, B. Janker. Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Laser. Eng., 37, 101(2002).
[4] N. S. Lawrence. Analytical detection methodologies for methane and related hydrocarbons. Talanta, 69, 385(2006).
[5] M. Lackner. Tunable diode laser absorption spectroscopy (TDLAS) in the process: a review. Rev. Chem. Eng., 23, 65(2007).
[6] J. Shemshad, S. M. Aminossadati, M. S. Kizil. A review of developments in near infrared methane detection based on tunable diode laser. Sensor. Actuat. B Chem., 171, 77(2012).
[7] J. Kamieniak, E. P. Randviir, C. E. Banks. The latest developments in the analytical sensing of methane. TrAC Trend. Anal. Chem., 73, 146(2015).
[8] S. V. Kireev, S. L. Shnyrev. On-line monitoring of odorant in natural gas mixtures of different composition by the infrared absorption spectroscopy method. Laser Phys. Lett., 15, 035705(2018).
[9] F. Wang, S. Jia, Y. Wang, Z. Tang. Recent developments in modulation spectroscopy for methane detection based on tunable diode laser. Appl. Sci., 9, 2816(2019).
[10] J. Mi, H. Yu, L. Yuan, S. Li, M. Li, S. Liang, Q. Kan, J. Pan. Distributed Bragg reflector laser (1.8 µm) with 10 nm wavelength tuning range. Chin. Opt. Lett., 13, 041401(2015).
[11] H. Yu, P. Wang, J. Mi, X. Zhou, J. Pan, H. Wang, L. Xie, W. Wang. 1.8-µm DBR lasers with over 11-nm continuous wavelength tuning range for multi-species gas detection. Asia Communications and Photonics Conference (ACP), 1(2017).
[12] H. Yu, J. Pan, X. Zhou, H. Wang, L. Xie, W. Wang. A widely tunable three-section DBR lasers for multi-species gas detection. Appl. Sci., 11, 2618(2021).
[13] H. Yu, M. Wang, D. Zhou, X. Zhou, P. Wang, S. Liang, Y. Zhang, J. Pan, W. Wang. A 1.6-µm widely tunable distributed Bragg reflector laser diode based on InGaAs/InGaAsP quantum-wells material. Opt. Commun., 497, 127201(2021).
[14] Y. Fu, H. Liu, Y. Sui, B. Li, W. Ye, C. Zheng, Y. Wang. A near-infrared methane detection system using a 1.654 µm wavelength-modulated diode laser. Optoelectron. Lett., 12, 140(2016).
[15] J. Wang, B. Li, G. Lin, Q. Ma, S. Wang, M. Piao. Near-infrared methane sensor based on a distributed feedback laser. Spectrosc. Lett., 52, 113(2019).
[16] L. Shao, B. Fang, F. Zheng, X. Qiu, Q. He, J. Wei, C. Li, W. Zhao. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 µm DFB laser. Spectrochim. Acta A Mol. Biomol. Spectrosc., 222, 117118(2019).
[17] B. Wang, H. Lu, A. Li, Y. Chen, T. Dai, S. Huang, H. Lian. Research of TDLAS methane detection system using VCSEL laser as the light source. Infrared Laser Eng., 49, 0405002(2020).
[18] M. Chen, Y. Shi, R. Xiao, Z. Sun, S. Chen, Y. Xu, B. Yang, X. Chen. Tunable DFB laser array for multi-gas detection. 19th International Conference on Optical Communications and Networks (ICOCN), 1(2021).
[19] B. Li, L. Xue, N. Ji, D. Wei. Research on spectroscopy modulation of a distributed feedback laser diode based on the TDLAS technique. Int. J. Opt., 2021, 8829790(2021).
[20] F. Meng, H. Yu, X. Zhou, Y. Li, M. Wang, W. Yang, W. Chen, Y. Zhang, J. Pan. Quantum wells micro-ring resonator laser emitting at 1746 nm for gas sensing. Chin. Opt. Lett., 19, 041406(2021).
[21] H. Lian, B. Wang, Y. Yu, L. Cheng, T. Dai, S. Huang. Carbon monoxide gas detection system based on VCSEL using TDLAS technology. Proc. SPIE, 11887, 118871O(2021).
[22] I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, E. J. Zak. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 203, 3(2017).
[23] T. Hosoda, G. Kipshidze, L. Shterengas, G. Belenky. Diode lasers emitting near 3.44 µm in continuous-wave regime at 300 K. Electron. Lett., 46, 1455(2010).
[24] L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, L. Worschech. Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room. Electron. Lett., 47, 46(2011).
[25] G. K. Veerabathrana, S. Sprengel, A. Andrejew, M.-C. Amann. Room-temperature vertical-cavity surface-emitting lasers at 4 µm with GaSb-based type-II quantum wells. Appl. Phys. Lett., 110, 071104(2017).
[26] H. Nie, F. Wang, J. Liu, K. Yang, B. Zhang, J. He. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review. Chin. Opt. Lett., 19, 091407(2021).
[27] X. Ma, Y. Huang, Y. Yang, J. Xiao, H. Weng, Z. Xiao. Mode coupling in hybrid square-rectangular lasers for single mode operation. Appl. Phys. Lett., 109, 071102(2016).
[28] X. Ma, Y. Huang, Y. Yang, H. Weng, J. Xiao, M. Tang, Y. Du. Mode and lasing characteristics for hybrid square-rectangular lasers. IEEE J. Sel. Top. Quantum Electron., 23, 1500409(2017).
[29] Y. Hao, F. Wang, M. Tang, H. Weng, Y. Yang, J. Xiao, Y. Huang. Widely tunable single-mode lasers based on a hybrid square/rhombus-rectangular microcavity. Photonics Res., 7, 543(2019).
Get Citation
Copy Citation Text
Yingrun Fan, Jinlong Xiao, Zhengzheng Shen, Youzeng Hao, Jiachen Liu, Ke Yang, Yuede Yang, Yongzhen Huang, "1.65 µm square-FP coupled cavity semiconductor laser for methane gas detection," Chin. Opt. Lett. 20, 061401 (2022)
Category: Lasers, Optical Amplifiers, and Laser Optics
Received: Jan. 19, 2022
Accepted: Mar. 25, 2022
Published Online: Apr. 29, 2022
The Author Email: Jinlong Xiao (jlxiao@semi.ac.cn)