Journal of Inorganic Materials, Volume. 40, Issue 6, 647(2025)

Crystal Structure and Terahertz Dielectric Properties of (Ti0.5W0.5)5+ Doped MgNb2O6 Ceramics

Zipeng HUANG1,2,3, Wenxiao JIA1,2,3, and Lingxia LI1,2,3、*
Author Affiliations
  • 11. School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 22. Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
  • 33. Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, China
  • show less
    References(33)

    [2] HORIUCHI N. Terahertz surprises[J]. Nature Photonics, 12:, 128(2018).

    [3] ZHOU D, PANG L X, WANG D W et al. Crystal structure, impedance and broadband dielectric spectra of ordered scheelite- structured Bi(Sc1/3Mo2/3)O4 ceramic[J]. Journal of the European Ceramic Society, 38, 1556(2018).

    [4] YAO B C, LIU Y, HUANG S W et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures[J]. Nature Photonics, 12:, 22(2018).

    [5] LUO C Y, LI D, LUO Q et al. Design of a tunable multiband terahertz waves absorber[J]. Journal of Alloys and Compounds, 652:, 18(2015).

    [6] NIKITIN A Y. Telecom meets terahertz[J]. Nature Photonics, 12:, 3(2018).

    [7] BAO J, ZHANG Y P, KIMURA H et al. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1-xTix)3(MoO4)9 ceramics[J]. Journal of Advanced Ceramics, 12, 82(2023).

    [8] TIAN H R, ZHANG Y Y, WANG R H et al. Effect of Ge4+- substituted on the structure characteristics and microwave/terahertz dielectric properties of ultra-low εr, high Q·f cordierite ceramics[J]. Journal of Materials Science & Technology, 216:, 165(2025).

    [9] TIAN H R, ZHANG X H, ZHANG Z D et al. Low-permittivity LiLn(PO3)4 (Ln=La, Sm, Eu) dielectric ceramics for microwave/ millimeter-wave communication[J]. Journal of Advanced Ceramics, 13, 602(2024).

    [11] FU Y, REN Y Q, SUN D W. Novel analysis of food processes by terahertz spectral imaging: a review of recent research findings[J]. Trends in Food Science & Technology, 147:, 104463(2024).

    [12] JIANG W, ZHOU Q H, HE J G et al. Terahertz communications and sensing for 6G and beyond: a comprehensive review[J]. IEEE Communications Surveys & Tutorials, 26, 2326(2024).

    [13] SATPATHY S, KHALAF O I, SHUKLA D K et al. Consumer electronics based smart technologies for enhanced terahertz healthcare having an integration of split learning with medical imaging[J]. Scientific Reports, 14:, 10412(2024).

    [14] WITHAYACHUMNANKUL W, YAMADA R, FUJITA M et al. All-dielectric rod antenna array for terahertz communications[J]. APL Photonics, 3, 051707(2018).

    [15] SUN D D, QI L M, LIU Z Y. Terahertz broadband filter and electromagnetically induced transparency structure with complementary metasurface[J]. Results in Physics, 16:, 102887(2020).

    [16] AKO R T, UPADHYAY A, WITHAYACHUMNANKUL W et al. Dielectrics for terahertz metasurfaces: material selection and fabrication techniques[J]. Advanced Optical Materials, 8, 1900750(2020).

    [18] HUANG J B, YANG B, YU C Y et al. Microwave and terahertz dielectric properties of MgTiO3-CaTiO3 ceramics[J]. Materials Letters, 138:, 225(2015).

    [19] YU C Y, ZENG Y, YANG B et al. Titanium dioxide engineered for near-dispersionless high terahertz permittivity and ultra-low-loss[J]. Scientific Reports, 7:, 6639(2017).

    [20] WENG Z Z, SONG C X, XIONG Z X et al. Microstructure and broadband dielectric properties of Zn2SiO4 ceramics with nano- sized TiO2 addition[J]. Ceramics International, 45, 13251(2019).

    [21] ZHANG B, GE M L. Investigation of optical pumping on the dielectric properties of 0.3SrTiO3-0.7NdAlO3 ceramics in THz range[J]. Optical Materials, 109:, 110226(2020).

    [22] HUANG Z P, QIAO J L, LI L X. Crystal structure, Raman spectra, and microwave dielectric performances of TiW-substituted magnesium niobite ceramics[J]. Ceramics International, 50, 5013(2024).

    [23] ZHANG Q, SU H, TANG X L et al. Effects of Cu2+ substitution on bond characteristics, Raman spectra, and microwave dielectric properties of Li2Mg0.6Zn0.4SiO4 ceramics[J]. Journal of the European Ceramic Society, 41, 3432(2021).

    [24] HUANG Z P, LI L X, QIAO J L. Trace additive enhances microwave dielectric performance significantly to facilitate 5G communications[J]. Journal of the American Ceramic Society, 105, 7426(2022).

    [25] SHANKER V, GANGULI A K. Comparative study of dielectric properties of MgNb2O6 prepared by molten salt and ceramic method[J]. Bulletin of Materials Science, 26, 741(2003).

    [26] SARKAR K, MUKHERJEE S. Synthesis, characterization and property evaluation of single phase MgNb2O6 by chemical route[J]. Journal of the Australian Ceramic Society, 52, 32(2016).

    [27] WANG S, LI L X, WANG X B. Low-temperature firing and microwave dielectric properties of MgNb2-xVx/2O6-1.25x ceramics[J]. Ceramics International, 48, 199(2022).

    [28] TZOU W C, CHEN Y C, YANG C F et al. Microwave dielectric characteristics of Mg(Ta1-xNbx)2O6 ceramics[J]. Materials Research Bulletin, 41, 1357(2006).

    [29] HE L, YU H T, ZENG M S et al. 0.73ZrTi2O6-0.27MgNb2O6 microwave dielectric ceramics modified by Al2O3 addition[J]. Journal of the American Ceramic Society, 101, 5110(2018).

    [30] ZHANG Q, TANG X L, HUANG F Y et al. Enhanced microwave dielectric properties of wolframite structured Zn1-xCuxWO4 ceramics with low sintering temperature[J]. Journal of Materiomics, 7, 1309(2021).

    [31] ADAMS S, MORETZKI O, CANADELL E. Global instability index optimizations for the localization of mobile protons[J]. Solid State Ionics, 168, 281(2004).

    [32] FAN X C, CHEN X M, LIU X Q. Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study[J]. Chemistry of Materials, 20, 4092(2008).

    [33] ZHANG Q, XU L L, TANG X L et al. Structural characteristics and microwave dielectric properties of Zn1-xBixVxW1-xO4-based ceramics for LTCC applications[J]. Journal of the European Ceramic Society, 42, 5691(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zipeng HUANG, Wenxiao JIA, Lingxia LI. Crystal Structure and Terahertz Dielectric Properties of (Ti0.5W0.5)5+ Doped MgNb2O6 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 647

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 10, 2024

    Accepted: --

    Published Online: Sep. 2, 2025

    The Author Email: Lingxia LI (tjulingxiali_666@163.com)

    DOI:10.15541/jim20240512

    Topics