Journal of Inorganic Materials, Volume. 40, Issue 6, 647(2025)
[2] HORIUCHI N. Terahertz surprises[J]. Nature Photonics, 12:, 128(2018).
[3] ZHOU D, PANG L X, WANG D W et al. Crystal structure, impedance and broadband dielectric spectra of ordered scheelite- structured Bi(Sc1/3Mo2/3)O4 ceramic[J]. Journal of the European Ceramic Society, 38, 1556(2018).
[4] YAO B C, LIU Y, HUANG S W et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures[J]. Nature Photonics, 12:, 22(2018).
[5] LUO C Y, LI D, LUO Q et al. Design of a tunable multiband terahertz waves absorber[J]. Journal of Alloys and Compounds, 652:, 18(2015).
[6] NIKITIN A Y. Telecom meets terahertz[J]. Nature Photonics, 12:, 3(2018).
[7] BAO J, ZHANG Y P, KIMURA H et al. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1-
[8] TIAN H R, ZHANG Y Y, WANG R H et al. Effect of Ge4+- substituted on the structure characteristics and microwave/terahertz dielectric properties of ultra-low
[9] TIAN H R, ZHANG X H, ZHANG Z D et al. Low-permittivity LiLn(PO3)4 (Ln=La, Sm, Eu) dielectric ceramics for microwave/ millimeter-wave communication[J]. Journal of Advanced Ceramics, 13, 602(2024).
[11] FU Y, REN Y Q, SUN D W. Novel analysis of food processes by terahertz spectral imaging: a review of recent research findings[J]. Trends in Food Science & Technology, 147:, 104463(2024).
[12] JIANG W, ZHOU Q H, HE J G et al. Terahertz communications and sensing for 6G and beyond: a comprehensive review[J]. IEEE Communications Surveys & Tutorials, 26, 2326(2024).
[13] SATPATHY S, KHALAF O I, SHUKLA D K et al. Consumer electronics based smart technologies for enhanced terahertz healthcare having an integration of split learning with medical imaging[J]. Scientific Reports, 14:, 10412(2024).
[14] WITHAYACHUMNANKUL W, YAMADA R, FUJITA M et al. All-dielectric rod antenna array for terahertz communications[J]. APL Photonics, 3, 051707(2018).
[15] SUN D D, QI L M, LIU Z Y. Terahertz broadband filter and electromagnetically induced transparency structure with complementary metasurface[J]. Results in Physics, 16:, 102887(2020).
[16] AKO R T, UPADHYAY A, WITHAYACHUMNANKUL W et al. Dielectrics for terahertz metasurfaces: material selection and fabrication techniques[J]. Advanced Optical Materials, 8, 1900750(2020).
[18] HUANG J B, YANG B, YU C Y et al. Microwave and terahertz dielectric properties of MgTiO3-CaTiO3 ceramics[J]. Materials Letters, 138:, 225(2015).
[19] YU C Y, ZENG Y, YANG B et al. Titanium dioxide engineered for near-dispersionless high terahertz permittivity and ultra-low-loss[J]. Scientific Reports, 7:, 6639(2017).
[20] WENG Z Z, SONG C X, XIONG Z X et al. Microstructure and broadband dielectric properties of Zn2SiO4 ceramics with nano- sized TiO2 addition[J]. Ceramics International, 45, 13251(2019).
[21] ZHANG B, GE M L. Investigation of optical pumping on the dielectric properties of 0.3SrTiO3-0.7NdAlO3 ceramics in THz range[J]. Optical Materials, 109:, 110226(2020).
[22] HUANG Z P, QIAO J L, LI L X. Crystal structure, Raman spectra, and microwave dielectric performances of TiW-substituted magnesium niobite ceramics[J]. Ceramics International, 50, 5013(2024).
[23] ZHANG Q, SU H, TANG X L et al. Effects of Cu2+ substitution on bond characteristics, Raman spectra, and microwave dielectric properties of Li2Mg0.6Zn0.4SiO4 ceramics[J]. Journal of the European Ceramic Society, 41, 3432(2021).
[24] HUANG Z P, LI L X, QIAO J L. Trace additive enhances microwave dielectric performance significantly to facilitate 5G communications[J]. Journal of the American Ceramic Society, 105, 7426(2022).
[25] SHANKER V, GANGULI A K. Comparative study of dielectric properties of MgNb2O6 prepared by molten salt and ceramic method[J]. Bulletin of Materials Science, 26, 741(2003).
[26] SARKAR K, MUKHERJEE S. Synthesis, characterization and property evaluation of single phase MgNb2O6 by chemical route[J]. Journal of the Australian Ceramic Society, 52, 32(2016).
[27] WANG S, LI L X, WANG X B. Low-temperature firing and microwave dielectric properties of MgNb2-
[28] TZOU W C, CHEN Y C, YANG C F et al. Microwave dielectric characteristics of Mg(Ta1-
[29] HE L, YU H T, ZENG M S et al. 0.73ZrTi2O6-0.27MgNb2O6 microwave dielectric ceramics modified by Al2O3 addition[J]. Journal of the American Ceramic Society, 101, 5110(2018).
[30] ZHANG Q, TANG X L, HUANG F Y et al. Enhanced microwave dielectric properties of wolframite structured Zn1-
[31] ADAMS S, MORETZKI O, CANADELL E. Global instability index optimizations for the localization of mobile protons[J]. Solid State Ionics, 168, 281(2004).
[32] FAN X C, CHEN X M, LIU X Q. Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study[J]. Chemistry of Materials, 20, 4092(2008).
[33] ZHANG Q, XU L L, TANG X L et al. Structural characteristics and microwave dielectric properties of Zn1-
Get Citation
Copy Citation Text
Zipeng HUANG, Wenxiao JIA, Lingxia LI.
Category:
Received: Dec. 10, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Lingxia LI (tjulingxiali_666@163.com)