Frontiers of Optoelectronics, Volume. 17, Issue 4, 38(2024)
Influence of the homotopy stability perturbation on physical variations of non-local opto-electronic semiconductor materials
[1] [1] Liao, S.: Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169(2), 1186–1194 (2005)
[2] [2] He, J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135(1), 73–79 (2003)
[3] [3] Liao, S.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147(2), 499–513 (2004)
[4] [4] Watson, L.T., Haftka, R.T.: Modern homotopy methods in optimization. Comput. Methods in Appl. Mech. Eng. 74(3), 289–305 (1989)
[5] [5] Zenkour, A.M.: On generalized three-phase-lag models in photo-thermoelasticity. Int. J. Appl. Mech. 14(2), 2250005 (2022)
[6] [6] Gupta, V., Barak, M.S., Das, S.: Vibrational analysis of size-dependent thermo-piezo-photo-electric semiconductor medium under memory-dependent Moore–Gibson–Thompson photo-thermoelasticity theory. Mech. Adv. Mater. Struct. 1–17 (2023).
[7] [7] Othman, M.I.A., Tantawi, R.S., Eraki, E.E.M.: Effect of initial stress on a semi-conductor material with temperature dependent properties under DPL model. Microsyst. Technol. 23(12), 5587–5598 (2017).
[8] [8] Askar, S., Abouelregal, A.E., Marin, M., Foul, A.: Photo-thermoelasticity heat transfer modeling with fractional differential actuators for stimulated nano-semi-conductor media. Symmetry (Basel) 15(3), 656 (2023)
[9] [9] Adel, M., El-Dali, A., Seddeek, M.A., Yahya, A.S., El-Bary, A.A., Lotfy, K.: The fractional derivative and moisture diffusivity for Moore-Gibson-Thompson model of rotating magneto-semiconducting material. J. Vib. Eng. Technol.
[10] [10] El-Sapa, S., Gepreel, K.A., Lotfy, K., El-Bary, A., Mahdy, A.M.S.: Impact of variable thermal conductivity of thermal-plasma-mechanical waves on rotational microelongated excited semiconductor. J. Low Temp. Phys. 209(1–2), 144–165 (2022)
[11] [11] Abouelregal, A.E., Zakaria, K., Sirwah, M.A., Ahmad, H., Rashid, A.F.: Viscoelastic initially stressed microbeam heated by an intense pulse laser via photo-thermo-elasticity with twophase lag. Int. J. Mod. Phys. C 33(6), 2250073 (2022)
[12] [12] Sur, A.: Photo-thermoelastic inter action in a semiconductor with cylindrical cavity due to memory effect. Mech. Time-Depend. Mater. 28(3), 1219–1243 (2024)
[13] [13] Ezzat, M.A., Bary, A.A.: State space approach of two-temperature magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity. Int. J. Eng. Sci. 47(4), 618–630 (2009)
[14] [14] Sherief, H.H., Ezzat, M.A.: Solution of the generalized problem of thermoelasticity in the form of series of functions. J. Therm. Stress. 17(1), 75–95 (1994)
[15] [15] Ezzat, M.A.: Hyperbolic thermal-plasma wave propagation in semiconductor of organic material. Waves Random Complex Media 32(1), 334–358 (2022)
[16] [16] Hendy, M.H., Amin, M.M., Ezzat, M.A.: Memory-dependent derivative theory of ultrafast laser-induced behavior in magneto-thermo-viscoelastic metal films. Ind. J. Phys. Proc. Ind. Assoc. Cultiv. 95(6), 1121–1130 (2021)
[17] [17] Ezzat, M.A.: A novel model of fractional thermal and plasma transfer within a non-metallic plate. Smart Struct. Syst. Int. J. 27(1), 73–87 (2021)
[18] [18] Sur, A., Mondal, S., Kanoria, M.: Effect of nonlocality and memory responses in the thermoelastic problem with a Mode I crack. Waves Random Complex Media 32(2), 771–796 (2022)
[19] [19] Abd-Elaziz, E.M., Jahangir, A., Othman, M.I.A.: Propagation of plane waves in nonlocal semiconductor nanostructure thermoelastic solid with fractional derivative due to ramp-type heat source. Int. J. Comput. Mater. Sci. Eng. 13(4), 2350032 (2024)
[20] [20] Sarkar, N., Mondal, S., Othman, M.I.A.: L-S theory for the propagation of the photo-thermal waves in a semi-conducting nonlocal elastic medium. Waves Random Complex Media 32(6), 2622–2635 (2022)
[21] [21] Sur, A.: Non-local memory-dependent heat conduction in a magneto-thermoelastic problem. Waves Random Complex Media 32(1), 251–271 (2022)
[22] [22] Tiwari, R., Kumar, R., Abouelregal, A.E.: Analysis of a magneto-thermoelastic problem in a piezoelastic medium using the non-local memory-dependent heat conduction theory involving three phase lags. Mech. Time-Depend. Mater. 26(2), 271–287 (2022)
[23] [23] El-Sapa, S., El-Bary, A.A., Lotfy, K.: Effect of an excited nonlocal microelongated semiconductor with variable thermal conductivity on the propagation of photothermoelastic waves. Opt. Quantum Electron. 55(6), 569 (2023)
[24] [24] El-Sapa, S., Alhejaili, W., Lotfy, K., El-Bary, A.A.: Response of excited microelongated non-local semiconductor layer thermomechanical waves to photothermal transport processes. Acta Mech. 234(6), 2373–2388 (2023)
[25] [25] Abbas, I.A., Alzahrani, F., Abdalla, A.N., Berto, F.: Fractional order thermoelastic wave assessment in a nanoscale beam using the eigenvalue technique. Strength Mater. 51, 427–438 (2019)
[26] [26] Kaur, I., Singh, K.: Nonlocal memory dependent derivative analysis of a photo-thermoelastic semiconductor resonator. Mech. Solids 58(2), 529–553 (2023)
[27] [27] Hosseini, S.M., Sladek, J., Sladek, V.: Nonlocal coupled photothermoelasticity analysis in a semiconducting micro/nano beam resonator subjected to plasma shock loading: a green-Naghdi-based analytical solution. Appl. Math. Model. 88, 631–651 (2020)
[28] [28] Sardar, S. S., Das, B., Ghosh, D., Lahiri, A.: Photothermal effects of semi-conducting medium with non-local theory. Waves Random Complex Media 1–22 (2023).
[29] [29] Ezzat, M.A., Al-Muhiameed, Z.I.: Thermo-mechanical response of size-dependent piezoelectric materials in thermo-viscoelasticity theory. Steel Compos. Struct. 45(4), 535 (2022)
[30] [30] El-Sapa, S., Lotfy, K., El-Bary, A.A., Ahmed, M.H.: Moisture diffusivity and photothermal excitation in nonlocal semiconductor materials with laser pulses. Silicon. 15(10), 4489–4500 (2023)
[31] [31] Ezzat, M.A., Ezzat, S.M., Alkharraz, M.Y.: State-space approach to nonlocal thermo-viscoelastic piezoelectric materials with fractional dual-phase lag heat transfer. Int. J. Numer. Methods Heat Fluid Flow 32 (12): 3726–3750 (2022)
[32] [32] Ezzat, M.A., Ezzat, S.M., Alduraibi, N.S.: On size-dependent thermo-viscoelasticity theory for piezoelectric materials. Waves in Random and Complex Media (2022)
[33] [33] Ezzat, M.A., El Bary, A.A., ElKaramany. A.S.: Two-temperature theory in generalized magneto-thermo-visco-elasticity. Can. J. Phys. 87(4), 329–336 (2009)
[34] [34] Ezzat, M.A.: Generation of generalized magnetothermoelastic waves by thermal shock in a perfectly conducting half-space. J. Therm. Stress. 20(6), 617–633 (1997)
[35] [35] Saeed, T., Abbas, I.A.: Effects of the nonlocal thermoelastic model in a thermoelastic nanoscale material. Mathematics 10(2), 284 (2022)
[36] [36] Ali, H., Jahangir, A., Khan, A.: Reflection of thermo-elastic wave in semiconductor nanostructures nonlocal porous medium. J. Cent. South Univ. 27(11), 3188–3201 (2020)
[37] [37] Seydel, R.: Practical Bifurcation and Stability Analysis (Vol. 5). Springer Science & Business Media (2009).
[38] [38] Hassanin, W.S., Lotfy, K., Seddeek, M.A., El-Dali, A., Eid, M.R., Elsaid, E.M.: A novel approach to analyzing the stability of physical fields in semiconductor materials under photothermal excitation. Chinese J. Phys. 91, 1027–1038 (2024)
[39] [39] Bhattacharyya, K.: Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet. Int. Commun. Heat and Mass Transf. 38(7), 917–922 (2011)
[40] [40] Akbar, N.S., Khan, Z.H., Haq, R.U., Nadeem, S.: Dual solutions in MHD stagnation-point flow of Prandtl fluid impinging on shrinking sheet. Appl. Math. Mech. 35, 813–820 (2014)
[41] [41] Merkin, J.H.: On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 20(2), 171–179 (1986)
[42] [42] Dennis, S.C.R., Ng, M.: Dual solutions for steady laminar flow through a curved tube. Q. J. Mech. Appl. Math. 35(3), 305–324 (1982)
[43] [43] Eguchi, T., Hanson, A.J.: Self-dual solutions to Euclidean gravity. Ann. Phys. 120(1), 82–106 (1979)
Get Citation
Copy Citation Text
El-Dali A., Othman Mohamed I. A.. Influence of the homotopy stability perturbation on physical variations of non-local opto-electronic semiconductor materials[J]. Frontiers of Optoelectronics, 2024, 17(4): 38
Category: RESEARCH ARTICLE
Received: Jul. 16, 2024
Accepted: Feb. 28, 2025
Published Online: Feb. 28, 2025
The Author Email: