Chinese Journal of Lasers, Volume. 47, Issue 2, 207006(2020)

Advances in Optical Imaging for Monitoring Photodynamic Therapy Dosimetry

Li Wenbo, Shen Yi, and Li Buhong
Author Affiliations
  • Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education,Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, China
  • show less
    Figures & Tables(6)
    PDT principle and the optical monitoring for dose parameters
    Applications of optical imaging techniques in monitoring PDT dose
    • Table 1. Optical imaging techniques for quantifying photosensitizer concentration

      View table

      Table 1. Optical imaging techniques for quantifying photosensitizer concentration

      Optical imagingtechniqueParameterQuantitative algorithmMeasured dataSensitivityReference
      QFIConcentrationSpectral constraintnormalizationAbsolute value20 ng/mL[25]
      ConcentrationSpectral constraintnormalizationAbsolute value8 ng/mL[28]
      QSFFIConcentrationStandard diffusionapproximationAbsolute value20 ng/g[31]
      WSRFIConcentrationImproved spectrallyconstrained normalizationAbsolute value10 ng/mL[30]
    • Table 2. Optical imaging techniques for monitoring oxygen parameters

      View table

      Table 2. Optical imaging techniques for monitoring oxygen parameters

      Oxygen parameterOptical imaging techniquesMeasured dataReference
      Ultrasound-PAIRelative value[40]
      Oxygen saturationPAMRelative value[41]
      MSOTRelative value[42]
      Visible light OCTRelative/absolute value[48]
      Tissue oxygen partial pressurePALIAbsolute value (0--13332 Pa)[46]
    • Table 3. Optical imaging techniques for 1O2 luminescence

      View table

      Table 3. Optical imaging techniques for 1O2 luminescence

      Imaging techniqueDetectorAdvantages of imaging systemReference
      PMT (photomultiplier tube)Large active area (>10 mm×10 mm)[54]
      Time-resolvedSNSPDLow dark count rates, high detection efficiency (>85%) and detection of wide spectrum[55]
      NFADAchieve DCR as low as 1 countsper second at 10% efficiency[56]
      Resolution: 50 μm; imaging time: ~1 s[57]
      Spatial-resolvedNIR CCDResolution: 46 μm; imaging time: <30 s[58]
      Resolution: 30 μm; imaging time: ~2 s[59]
    • Table 4. Optical imaging techniques for monitoring vascular response

      View table

      Table 4. Optical imaging techniques for monitoring vascular response

      Optical imaging techniqueParameterReference
      LDIRelative blood flow velocity[60]
      LSIVascular morphology and relative blood flow velocity[69]
      DOCTRelative blood flow velocity (resolution:>18 μm; depth:1 mm)[81]
      Functional OCTOCTAMicrovasculature (resolution:>5 μm; depth:3 mm)[82]
      MML-OCAFlowing/functional microvasculature (resolution:>10 μm; depth:1.3 mm)[85]
      PAIPATVascular morphology (resolution:0.1--1.0 mm; depth:<10 cm)[71]
      PAMVascular morphology (resolution:>30 μm; depth:superficial vasculature)[41]
    Tools

    Get Citation

    Copy Citation Text

    Li Wenbo, Shen Yi, Li Buhong. Advances in Optical Imaging for Monitoring Photodynamic Therapy Dosimetry[J]. Chinese Journal of Lasers, 2020, 47(2): 207006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Nov. 4, 2019

    Accepted: --

    Published Online: Feb. 21, 2020

    The Author Email:

    DOI:10.3788/CJL202047.0207006

    Topics