Infrared and Laser Engineering, Volume. 51, Issue 5, 20220271(2022)
Coherently pumped microcavity soliton physics and dual-comb applications(Invited)
[1] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).
[2] Kippenberg T, Spillane S, Vahala K. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity[J]. Phys Rev Lett, 93, 083904(2004).
[3] Savchenkov, A A, Matsko A B, Strekalov D, et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator[J]. Phys Rev Lett, 93, 243905(2004).
[4] Del’Haye, P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007).
[5] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 416, 233(2002).
[6] Cundiff S T, Ye J. Colloquium: Femtosecond optical frequency combs[J]. Rev Mod Phys, 75, 325(2003).
[7] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).
[8] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 288, 635-639(2000).
[9] Grelu P, Akhmediev N. Dissipative solitons for modelocked lasers[J]. Nature Photonics, 6, 84-92(2012).
[10] Herr T. Brasch V, Jost J D, et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-152(2014).
[11] Xue X X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators[J]. Nature Photonics, 9, 594-600(2015).
[12] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).
[13] Suh M G, Vahala K. Gigahertz-repetition-rate soliton microcombs[J]. Optica, 5, 65-66(2018).
[14] Li Q, Briles T C, Westly D A, et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime[J]. Optica, 4, 193-203(2017).
[15] Pfeiffer M H, Herkommer C, Liu J Q, et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators[J]. Optica, 4, 684-691(2017).
[16] Li C H, Benedick A J, Fendel P, et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cms−1[J]. Nature, 452, 610-612(2008).
[17] Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations[J]. Science, 321, 1335-1337(2008).
[18] Suh M G, Yi X, Lai Y H, et al. Searching for exoplanets using a microresonator astrocomb[J]. Nature Photonics, 13, 25(2019).
[19] Obrzud E, Rainer M, Harutyunyan A, et al. A microphotonic astrocomb[J]. Nature Photonics, 13, 31(2019).
[20] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications[J]. Nature, 546, 274(2017).
[21] Fül?p, A, Mazur M, Lorences-Riesgo A, et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators[J]. Nature Communications, 9, 1-8(2018).
[22] Geng Y, Zhou H, Han X J, et al. Coherent optical communications using coherence-cloned kerr soliton microcombs[J]. Nature Communications, 13, 1070(2022).
[23] Liang W, Eliyahu D, Ilchenko V S, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator[J]. Nature Communications, 6, 7957(2015).
[24] Marpaung D, Yao J, Capmany J. Integrated microwave photonics[J]. Nature Photonics, 13, 80-90(2019).
[25] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs[J]. Science, 332, 555-559(2011).
[26] Brasch V, Geiselmann M, Herr T, et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation[J]. Science, 351, 357-360(2016).
[27] Wang P H, Jaramillo-Villegas J A, Xuan Y, et al. Intracavity characterization of micro-comb generation in the single-soliton regime[J]. Opt Express, 24, 10890-10897(2016).
[28] Joshi C, Jang J K, Luke K, et al. Thermally controlled comb generation and soliton modelocking in microresonators[J]. Opt Lett, 41, 2565-2568(2016).
[29] Yi X, Yang Q F, Yang K Y, et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator[J]. Optica, 2, 1078-1085(2015).
[30] Xu Y, Lin Y, Nielsen A, et al. Harmonic and rational harmonic driving of microresonator soliton frequency combs[J]. Optica, 7, 940-946(2020).
[31] Yu M, Okawachi Y, Griffith A G, et al. Mode-locked mid-infrared frequency combs in a silicon microresonator[J]. Optica, 3, 854-860(2016).
[32] Gong Z, Bruch A, Shen Mohan, et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators[J]. Opt Lett, 43, 4366-4369(2018).
[33] He Y, Yang Q F, Ling J W, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 6, 1138-1144(2019).
[34] Gong Z, Liu X, Xu Y, et al. Near-octave lithium niobate soliton microcomb[J]. Optica, 7, 1275-1278(2020).
[35] Pu M, Ottaviano L, Semenova E, et al. Efficient frequency comb generation in algaas-on-insulator[J]. Optica, 3, 823-826(2016).
[36] Chang L, Xie W Q, Shu H W, et al. Ultra-efficient frequency comb generation in algaas-on-insulator microresonators[J]. Nature Communications, 11, 1-8(2020).
[37] Moille G, Chang L, Xie W Q, et al. Dissipative Kerr solitons in a III-V microresonator[J]. Laser & Photonics Reviews, 14, 2000022(2020).
[38] Jung H, Yu S P, Carlson D R, et al. Tantala Kerr nonlinear integrated photonics[J]. Optica, 8, 811-817(2021).
[39] [39] Zheng Y, Sun C Z, Xiong B, et al. Integrated gallium nitride nonlinear photonics[J]. arXiv, 2020: 2010.16149.
[40] Wilson D J, Schneider K, Honl S, et al. Integrated gallium phosphide nonlinear photonics[J]. Nature Photonics, 14, 57-62(2020).
[41] Lu Z, Chen H J, Wang W, et al. Synthesized soliton crystals[J]. Nature communications, 12, 1-7(2021).
[42] Shen B, Chang L, Liu J, et al. Integrated turnkey soliton microcombs[J]. Nature, 582, 365-369(2020).
[43] Stern B, Ji X, Okawachi Y, et al. Battery-operated integrated frequency comb generator[J]. Nature, 562, 401-405(2018).
[44] Xiang C, Liu J, Guo J, et al. Laser soliton microcombs heterogeneously integrated on silicon[J]. Science, 373, 99-103(2021).
[45] Bao C, Yang C. Mode-pulling and phase-matching in broadband Kerr frequency comb generation[J]. JOSA B, 31, 3074-3080(2014).
[46] Guo H, Karpov M, Lucas E, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators[J]. Nature Physics, 13, 94-102(2017).
[47] Bao C, Xuan Y, Jaramillo-Villegas J A, et al. Direct soliton generation in microresonators[J]. Optics Letters, 42, 2519-2522(2017).
[48] Yi X, Yang Q F, Yang K Y, et al. Active capture and stabilization of temporal solitons in microresonators[J]. Optics Letters, 41, 2037-2040(2016).
[49] Stone J R, Briles T C, Drake T E, et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs[J]. Physical Review Letters, 121, 063902(2018).
[50] Zhou H, Geng Y, Cui W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities[J]. Light: Science & Applications, 8, 1-10(2019).
[51] Zhang S, Silver J M, Del Bino L, et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser[J]. Optica, 6, 206-212(2019).
[52] Pavlov N G, Koptyaev S, Lihachev G V, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes[J]. Nature Photonics, 12, 694-698(2018).
[53] Bao C, Xuan Y, Leaird D E, et al. Spatial mode-interaction induced single soliton generation in microresonators[J]. Optica, 4, 1011-1015(2017).
[54] Herr T, Brasch V, Jost J D, et al. Mode spectrum and temporal soliton formation in optical microresonators[J]. Physical Review Letters, 113, 123901(2014).
[55] Spencer D T, Drake T, Briles T C, et al. An integrated-photonics optical-frequency synthesizer[J]. Nature, 557, 81(2017).
[56] Newman Z L, Maurice V, Drake T, et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).
[57] Karpov M, Guo H, Kordts A, et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator[J]. Physical Review Letters, 116, 103902(2016).
[58] Yi X, Yang Q F, Yang K Y, et al. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities[J]. Optics Letters, 41, 3419-3422(2016).
[59] Yao S, Wei Z, Guo Y, et al. Self-frequency shift of AlN-on-sapphire Kerr solitons[J]. Optics Letters, 46, 5312-5315(2021).
[60] Yi X, Yang Q F, Zhang X, et al. Single-mode dispersive waves and soliton microcomb dynamics[J]. Nature Communications, 8, 1-9(2017).
[61] Matsko A B, Maleki L. On timing jitter of mode locked Kerr frequency combs[J]. Optics Express, 21, 28862-28876(2013).
[62] Bao C, Suh M G, Shen B, et al. Quantum diffusion of microcavity solitons[J]. Nature Physics, 17, 462-466(2021).
[63] Jia K, Wang X, Kwon D, et al. Photonic flywheel in a monolithic fiber resonator[J]. Physical Review Letters, 125, 143902(2020).
[64] Jeong D, Kwon D, Jeon I, et al. Ultralow jitter silica microcomb[J]. Optica, 7, 1108-1111(2020).
[65] Bao C, Yang C. Carrier-envelope phase dynamics of cavity solitons: Scaling law and soliton stability[J]. Physical Review A, 92, 053831(2015).
[66] Matsko A B, Savchenkov A A, Maleki L. On excitation of breather solitons in an optical microresonator[J]. Optics Letters, 37, 4856-4858(2012).
[67] Bao C, Jaramillo-Villegas J A, Xuan Y, et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator[J]. Physical Review Letters, 117, 163901(2016).
[68] Lucas E, Karpov M, Guo H, et al. Breathing dissipative solitons in optical microresonators[J]. Nature Communications, 8, 1-11(2017).
[69] Yu M, Jang J K, Okawachi Y, et al. Breather soliton dynamics in microresonators[J]. Nature Communications, 8, 1-7(2017).
[70] Yi X, Yang Q F, Yang K Y, et al. Imaging soliton dynamics in optical microcavities[J]. Nature Communications, 9, 1-8(2018).
[71] Bao C, Xuan Y, Wang C, et al. Observation of breathing dark pulses in normal dispersion optical microresonators[J]. Physical Review Letters, 121, 257401(2018).
[72] Yao S, Bao C, Wang P, et al. Generation of stable and breathing flat-top solitons via Raman assisted four wave mixing in microresonators[J]. Physical Review A, 101, 023833(2020).
[73] Yao B, Huang S W, Liu Y, et al. Gate-tunable frequency combs in graphene–nitride microresonators[J]. Nature, 558, 410-414(2018).
[74] Stegeman G I, Segev M. Optical spatial solitons and their interactions: universality and diversity[J]. Science, 286, 1518-1523(1999).
[75] Weng W, Bouchand R, Lucas E, et al. Heteronuclear soliton molecules in optical microresonators[J]. Nature Communications, 11, 1-9(2020).
[76] Yang Q F, Yi X, Yang K Y, et al. Stokes solitons in optical microcavities[J]. Nature Physics, 13, 53-57(2017).
[77] Jang J K, Erkintalo M, Coen S, et al. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons[J]. Nature Communications, 6, 1-7(2015).
[78] Taheri H, Matsko A B, Maleki L. Optical lattice trap for Kerr solitons[J]. The European Physical Journal D, 71, 1-13(2017).
[79] Wang Y, Leo F, Fatome J, et al. Universal mechanism for the binding of temporal cavity solitons[J]. Optica, 4, 855-863(2017).
[80] Karpov M, Pfeiffer M H P, Guo H, et al. Dynamics of soliton crystals in optical microresonators[J]. Nature Physics, 15, 1071-1077(2019).
[81] Yang Q F, Yi X, Yang K Y, et al. Counter-propagating solitons in microresonators[J]. Nature Photonics, 11, 560-564(2017).
[82] Bao C, Shen B, Suh M G, et al. Oscillatory motion of a counterpropagating Kerr soliton dimer[J]. Physical Review A, 103, L011501(2021).
[83] Lucas E, Lihachev G, Bouchand R, et al. Spatial multiplexing of soliton microcombs[J]. Nature Photonics, 12, 699-705(2018).
[84] Jang J K, Klenner A, Ji X, et al. Synchronization of coupled optical microresonators[J]. Nature Photonics, 12, 688-693(2018).
[85] Kim B Y, Jang J K, Okawachi Y, et al. Synchronization of nonsolitonic Kerr combs[J]. Science Advances, 7, eabi4362(2021).
[86] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 3, 414-426(2016).
[87] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy[J]. Science, 354, 600-603(2016).
[88] Dutt A, Joshi C, Ji X, et al. On-chip dual-comb source for spectroscopy[J]. Science Advances, 4, e1701858(2018).
[89] Yang Q F, Shen B, Wang H, et al. Vernier spectrometer using counterpropagating soliton microcombs[J]. Science, 363, 965-968(2019).
[90] Bao C, Suh M G, Vahala K. Microresonator soliton dual-comb imaging[J]. Optica, 6, 1110-1116(2019).
[91] Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 359, 884-887(2018).
[92] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 359, 887-891(2018).
[93] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).
[94] Wang C Y, Herr T, Del’Haye P, et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators[J]. Nature Communications, 4, 1-7(2013).
[95] Griffith A G, Lau R K W, Cardenas J, et al. Silicon-chip mid-infrared frequency comb generation[J]. Nature Communications, 6, 1-5(2015).
[96] Yu M, Okawachi Y, Griffith A G, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy[J]. Nature Commu-nications, 9, 1-6(2018).
[97] Luke K, Okawachi Y, Lamont M R E, et al. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator[J]. Optics Letters, 40, 4823-4826(2015).
[98] Yan M, Luo P L, Iwakuni K, et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators[J]. Light: Science & Applications, 6, e17076(2017).
[99] Kowligy A S, Carlson D R, Hickstein D D, et al. Mid-infrared frequency combs at 10 GHz[J]. Optics Letters, 45, 3677-3680(2020).
[100] Timmers H, Kowligy A, Lind A, et al. Molecular fingerprinting with bright, broadband infrared frequency combs[J]. Optica, 5, 727-732(2018).
[101] Bao C, Yuan Z, Wang H, et al. Interleaved difference-frequency generation for microcomb spectral densification in the mid-infrared[J]. Optica, 7, 309-315(2020).
[102] Bao C, Yuan Z, Wu L, et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy[J]. Nature Communications, 12, 1-8(2021).
[103] Cingöz A, Yost D C, Allison T K, et al. Direct frequency comb spectroscopy in the extreme ultraviolet[J]. Nature, 482, 68-71(2012).
[104] Guidry M A, Lukin D M, Yang K Y, et al. Quantum optics of soliton microcombs[J]. Nature Photonics, 16, 52-58(2022).
Get Citation
Copy Citation Text
Zhaoyu Cai, Zihao Wang, Changxi Yang, Chengying Bao. Coherently pumped microcavity soliton physics and dual-comb applications(Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220271
Category: Special issue—Microcavity optical frequency comb technology
Received: Apr. 1, 2022
Accepted: May. 12, 2022
Published Online: Jun. 14, 2022
The Author Email: