Chinese Journal of Lasers, Volume. 50, Issue 7, 0708007(2023)

Quantitative Analysis of NaCl Aerosols Based on Convolutional Neural Network and Filament‐Induced Fluorescence Spectroscopy

Mingming Liu1, Desheng Kong1, Yuyan Xiang1, Fengyuan Zhao1, Jing Zhang1, Ruipeng Zhang1, Yamin Gao1, Chenhao Zhi1, Yue Liu1, Maoqiang Xie1、*, Zhi Zhang2, Lu Sun2, Xing Zhao2, Nan Zhang2, and Weiwei Liu2
Author Affiliations
  • 1College of Software, Nankai University, Tianjin 300350, China
  • 2Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • show less
    Figures & Tables(11)
    Schematic of filament-induced fluorescence spectrum (FIFS) collection device
    Filament induced by femtosecond laser in NaCl aerosol
    Filament-induced fluorescence spectra of NaCl aerosol with five mass concentrations near 589 nm
    Calibration regression curve of NaCl aerosol’s filament-induced fluorescence spectra
    Architecture of one-dimensional CNN for predicting mass concentration of NaCl aerosol
    Prediction comparison of each model in full and characteristic spectra. (a)-(d) Full spectrum; (e)-(h) characteristic spectrum
    • Table 1. Mass concentration prediction results for full spectral data

      View table

      Table 1. Mass concentration prediction results for full spectral data

      Mass concentration prediction modelR2RMSERPDMAEACC
      MLR0.9910.18510.5810.1440.93
      PLSR0.9680.3266.0180.2590.82
      BPNN0.9850.2308.5720.1670.91
      1D-CNN0.9970.11018.4780.0730.99
    • Table 2. Mass concentration prediction results for characteristic spectral data

      View table

      Table 2. Mass concentration prediction results for characteristic spectral data

      Mass concentration prediction modelR2RMSERPDMAEACC
      CR0.8180.7682.5460.6820.40
      PLSR0.9900.19810.0580.1540.90
      BPNN0.9930.15912.8230.1041
      1D-CNN0.9970.11018.7020.0711
    • Table 3. Generalized prediction experimental results for full spectral data

      View table

      Table 3. Generalized prediction experimental results for full spectral data

      Mass concentration prediction modelRMSEMAEACC
      MLR1.1751.1750.43
      PLSR1.1021.0890.18
      BPNN0.6140.6060.64
      1D-CNN0.6870.6760.42
    • Table 4. Generalized prediction experimental results for characteristic spectral data

      View table

      Table 4. Generalized prediction experimental results for characteristic spectral data

      Mass concentration prediction modelRMSEMAEACC
      CR0.7760.8780.32
      PLSR3.1003.0840.42
      BPNN0.6690.6010.69
      1D-CNN0.3290.3110.87
    • Table 5. Generalized prediction experimental results of 1D-CNN in characteristic spectral data

      View table

      Table 5. Generalized prediction experimental results of 1D-CNN in characteristic spectral data

      Actual mass concentration /(mg·m-3RMSEMAEACC
      Average0.340.310.87
      0.330.310.310
      0.660.100.100.97
      1.320.240.240.97
      1.980.370.340.83
      2.640.240.210.97
      3.300.310.291
      3.960.500.440.93
      4.620.290.261
      5.280.340.311
      6.610.600.571
    Tools

    Get Citation

    Copy Citation Text

    Mingming Liu, Desheng Kong, Yuyan Xiang, Fengyuan Zhao, Jing Zhang, Ruipeng Zhang, Yamin Gao, Chenhao Zhi, Yue Liu, Maoqiang Xie, Zhi Zhang, Lu Sun, Xing Zhao, Nan Zhang, Weiwei Liu. Quantitative Analysis of NaCl Aerosols Based on Convolutional Neural Network and Filament‐Induced Fluorescence Spectroscopy[J]. Chinese Journal of Lasers, 2023, 50(7): 0708007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: nonlinear optics

    Received: Nov. 18, 2022

    Accepted: Feb. 16, 2023

    Published Online: Apr. 14, 2023

    The Author Email: Xie Maoqiang (xiemq@nankai.edu.cn)

    DOI:10.3788/CJL221489

    Topics