Laser Journal, Volume. 45, Issue 6, 44(2024)
Design of wideband terahertz vortex beam generation using geometric phase metasurfaces
[1] [1] Zhou X D, Li L J, Zhao D, et al. Application of terahertz technology in nondestructive testing of ceramic matrix composite defects[J]. Infrared and Laser Engineering, 2016, 45(08): 234-241.
[2] [2] Taylor Z D, Singh R S, Bennett D B, et al. THz Medical Imaging: in vivo Hydration Sensing[J]. IEEE transacitions on terahertz science and technology, 2011, 1(1): 201-219.
[3] [3] Huang J, Yang Z B, Wei D S, et al. Enhancement Effects of the Terahertz Near-Field Microscopy[J]. Applied Sciences, 2015, 5(4): 1745-1755.
[4] [4] KirilenkoI M S, Khonina S N. Information transmission using optical vortices[J]. Optical Memory and Neural Networks, 2013, 22(2): 81-89.
[5] [5] Faccio D, Dudley J, Clerici M, et al. Light in a twist: Orbital angular momentum[J]. Proceedings of the International School of Physics Idquo; Enrico Fermirdquo, 2016, 190:149-157.
[6] [6] Li G X, Wu L, Li K F, et al. Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation[J]. Nano letters, 2017, 17(12): 7974-7979.
[7] [7] Zhu L Y, Chen Y, Fang Z X, et al. Experimental demonstration and investigation of vortex circular Pearcey beams in a dynamically shaped fasion. [J]. Optics express, 2021, 29(13): 19819-19830.
[8] [8] Xin M B, Xie R S, Zhai G H, et al. Full control of dualband vortex beams using a high-efficiency single-layer bispectral 2 - bit coding metasurface. [J]. Optics express, 2020, 28(12): 17374-17383.
[9] [9] Fedorov K, Karrataev P, Sahafi P, et al. Compact Remote Spectral Teraherz Imager[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2022, 43(5-6): 493-502.
[10] [10] Lee W M, Yuan X C, Cheong W C, et al. Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation[J]. Optics Letters, 2004, 29(15): 1796-1798.
[11] [11] Guo S Q, He Z, Chen R S, et al. Generation and numerical simulation of the focused OAM beams[J]. Engineering Analysis with Boundary Elements, 2022, 135:359-368.
[12] [12] Li Y, Wang X. Dual-band polarization-sensitive terahertz metamaterial absorber possessing frequency and amplitude dynamically-continuously tunable characteristics[J]. Ferroelectrics, 2022, 593(1): 174-180.
[13] [13] Sinyukov A M, Liu Z W, Hor Y L, et al. Rapid-phase modulation of terahertz radiation for high-speed terahertz imaging and spectroscopy[J]. Optics Letters, 2008, 33(14): 1593-1595.
[17] [17] Xu H X, Liu H W, Ling X H, et al. Broadband Vortex Beam Generation Using Multimode Pancharatnam - Berry Metasurface[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7378-7382.
[18] [18] Fan J, Cheng Y, He B. High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies[J]. Journal of Physics D: Applied Physics, 2020, 54(11): 11510.
[19] [19] Ding X M, Monticone F, Zhang K, et al. Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency[J]. Advanced Materials, 2015, 18:0511-0520.
[20] [20] Wang W, Li Y, Guo Z, et al. Ultra-thin optical vortex phase plate base on the metasurface and the angular momentum transformation[J]. Journal of Optics, 2015, 17(4): 045102-045102.
Get Citation
Copy Citation Text
ZHANG Li, SUN Jun. Design of wideband terahertz vortex beam generation using geometric phase metasurfaces[J]. Laser Journal, 2024, 45(6): 44
Category:
Received: Nov. 4, 2023
Accepted: Nov. 26, 2024
Published Online: Nov. 26, 2024
The Author Email: