Journal of Semiconductors, Volume. 40, Issue 10, 101305(2019)
III–V compound materials and lasers on silicon
[1] S Kim, M Yokoyama, N Taoka et al. Self-aligned metal source/drain In
[2]
[3] C G Lee, X D Wang, J W Kysar et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385(2008).
[4] A K Geim, K S Novoselov. The rise of graphene. Nat Mater, 6, 183(2009).
[5]
[6] V R Almeida, C A Barrios, R R Panepucci et al. All-optical control of light on a silicon chip. Nature, 431, 1081(2004).
[7] J Michel, J Liu, L C Kimerling. High-performance Ge-on-Si photodetectors. Nat Photonics, 4, 527(2000).
[8] C Sun, M T Wade, Y Lee et al. Single-chip microprocessor that communicates directly using light. Nature, 528, 534(2015).
[9] Y Vlasov, W M J Green, F J Xia. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photonics, 2, 1(2008).
[10]
[11] R Won, M J Paniccia. Integrating silicon photonics. Nat Photonics, 4, 498(2010).
[12] L Andrew, J Qi, T Mingchu et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 20, 22181(2012).
[13] R D Bringans, D K Biegelsen, L Swartz. Atomic-step rearrangement on Si(100) by interaction with arsenic and the implication for GaAs-on-Si epitaxy. Phys Rev, 44, 3054(1991).
[14]
[15] H Mori, M Tachikawa, M Sugo et al. GaAs heteroepitaxy on an epitaxial Si surface with a low-temperature process. Appl Phys Lett, 63, 1963(1993).
[16] S Sakai, T Soga, M Takeyasu et al. Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition. Appl Phys Lett, 48, 413(1986).
[17]
[18] S M Ting, E A Fitzgerald. Metal-organic chemical vapor deposition of single domain GaAs on Ge/Ge
[19] T H Windhorn, G M Metze, B Y Tsaur et al. AlGaAs double-heterostructure diode lasers fabricated on a monolithic GaAs/Si substrate. Appl Phys Lett, 45, 309(1984).
[20] Y Takano, M Hisaka, N Fujii et al. Reduction of threading dislocations by InGaAs interlayer in GaAs layers grown on Si substrates. Appl Phys Lett, 73, 2917(1998).
[21] K Asai, H Katahama, Y Shiba. Dynamical formation process of pure edge misfit dislocations at GaAs/Si interfaces in post-annealing. J Appl Phys, 33, 4843(1994).
[22] Y Takagi, H Yonezu, Y Hachiya et al. Reduction mechanism of threading dislocation density in GaAs epilayer grown on Si substrate by high-temperature annealing. Jpn J Appl Phys, 33, 3368(1994).
[23] Y Kohama, Y Kadota, Y Ohmachi. InP grown on Si substrates with GaP buffer layers by metalorganic chemical vapor deposition. Jpn J Appl Phys, 28, 1337(1989).
[24] R Fischer, W Kopp, H Morkoc et al. Low threshold laser operation at room temperature in GaAs/(Al, Ga)As structures grown directly on (100)Si. Appl Phys Lett, 48, 1360(1986).
[25] X L Zhou, J Q Pan, R R Liang et al. Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate. J Semicond, 35, 073002(2014).
[26] Y Li, L J Giling. A closer study on the self-annihilation of antiphase boundaries in GaAs epilayers. J Cryst Growth, 163, 203(1996).
[27] M Tang, S Chen, J Wu et al. 1.3-
[28] M Sugo, H Mori, Y Sakai et al. Stable cw operation at room temperature of a 1.5-
[29] H Liu, T Wang, J Qi et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 5, 416(2011).
[30] S Chen, W Li, J Wu et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 10, 307(2016).
[31] K Jinkwan, J Bongyong, L Joohang et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt Express, 26, 11568(2018).
[32] J C Norman, D Jung, Z Zhang et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron, 55, 1(2019).
[33] D Jung, R Herrick, J Norman et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl Phys Lett, 112, 153507(2018).
[34] A Y Liu, Y C Zhang, J Norman et al. High performance continuous wave 1.3
[35] S Zhu, B Shi, Q Li et al. 1.5
[36] Y Wan, L Qiang, A Y Liu et al. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates. Appl Phys Lett, 108, 1(2016).
[37] J Norman, M J Kennedy, J Selvidge et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt Express, 25, 3927(2017).
[38] J Isenberg, W J Warta. Free carrier absorption in heavily doped silicon layers. Appl Phys Lett, 84, 2265(2004).
[39] A V Krishnamoorthy, L M F Chirovsky, W S Hobson et al. Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits. IEEE Photonics Technol Lett, 11, 128(1999).
[40] A W Fang, L Erica, Y H Kuo et al. A distributed feedback silicon evanescent laser. Opt Express, 16, 4413(2008).
[41] A W Fang, P Hyundai, C Oded et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt Express, 14, 9203(2006).
[42] A W Fang, B R Koch, R Jones et al. A distributed Bragg reflector silicon evanescent laser. IEEE Photonics Technol Lett, 20, 1667(2008).
[43] A D Groote, P Cardile, A Z Subramanian et al. Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters. Opt Express, 24, 13754(2016).
[44] P F Hyundai, F K Alexander, K Satoshi et al. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III–V offset quantum wells. Opt Express, 13, 9460(2005).
[45] J Justice, C Bower, M Meitl et al. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat Photonics, 6, 612(2012).
[46] D Pasquariello, K J Hjort. Plasma-assisted InP-to-Si low temperature wafer bonding. IEEE J Sel Top Quantum Electron, 8, 118(2002).
[47] S Keyvaninia, S Verstuyft, L Van Landschoot et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt Lett, 38, 5434(2013).
[48] S Sui, M T Tang, Y Yang et al. Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array. IEEE J Quantum Electron, 51, 2600108(2015).
[49] D Andrijasevic, M Austerer, A M Andrews et al. Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding. Appl Phys Lett, 92, 157(2008).
[50] L Yuan, L Tao, H Yu et al. Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method. IEEE Photonics Technol Lett, 25, 1180(2013).
[51] L Yuan, L Tao, W Chen et al. A buried ridge stripe structure InGaAsP-Si hybrid laser. IEEE Photonics Technol Lett, 27, 352(2015).
[52] T Hong, Y Wang, H Y Yu et al. A Selective area metal bonding method for Si photonics light sources. IEEE International Conference on Group IV Photonics(2010).
[53] H Yu, L Yuan, L Tao et al. 1550 nm evanescent hybrid InGaAsP-Si laser with buried ridge stripe structure. IEEE Photonics Technol Lett, 28, 1146(2016).
[54] T A Langdo, C W Leitz, M T Currie et al. High quality Ge on Si by epitaxial necking. Appl Phys Lett, 76, 3700(2000).
[55] Q Li, S M Han, S R J Brueck et al. Selective growth of Ge on Si(100) through vias of SiO2 nanotemplate using solid source molecular beam epitaxy. Appl Phys Lett, 83, 5032(2003).
[56] R J Matyi, H Shichijo, H L Tsai et al. Patterned growth of gallium arsenide on silicon. J Vac Sci Technol B, 6, 699(1988).
[57] K Woodbridge, P Barnes, R Murray et al. GaAs / AlGaAs pin MQW structures grown on patterned Si substrates. J Cryst Growth, 127, 112(1993).
[58] J S Park, J Bai, M Curtin et al. Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping. Appl Phys Lett, 90, 3344(2007).
[59] J Z Li, J Bai, J S Park et al. Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping. Appl Phys Lett, 91, 2293(2007).
[60] S Li, X Zhou, X Kong et al. Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped. J Cryst Growth, 426, 147(2015).
[61] S Y Li, X L Zhou, X T Kong et al. Selective area growth of GaAs in V-grooved trenches on Si (001) substrates by aspect-ratio. Chin Phys Lett, 32, 028101(2015).
[62] G Wang, M R Leys, R Loo et al. Selective area growth of high quality InP on Si (001) substrates. Appl Phys Lett, 97, 1(2010).
[63] M Paladugu, C Merckling, R Loo et al. Site selective integration of III–V materials on Si for nanoscale logic and photonic devices. Cryst Growth Des, 12, 4696(2012).
[64] S Li, X Zhou, X Kong et al. Catalyst-free growth of InP nanowires on patterned Si (001) substrate by using GaAs buffer layer. J Cryst Growth, 440, 81(2016).
[65] S Li, X Zhou, M Li et al. Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate. Appl Phys Lett, 108, 021902(2016).
[66] Z Wang, B Tian, M Pantouvaki et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat Photonics, 9, 837(2015).
[67] B Tian, C Merckling, D V Thourhout et al. Room temperature InGaAs/InP distributed feedback laser directly grown on silicon. Lasers & Electro-optics(2016).
[68] B Kunert, W Guo, Y Mols et al. III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate. Appl Phys Lett, 109, 511(2016).
[69] Y Han, Q Li, u S Zhu et al. Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths. Appl Phys Lett, 111, 212101(2017).
[70] Y Li, M Wang, X Zhou et al. InGaAs/InP multi-quantum-well nanowires with a lower optical leakage loss on V-groove-patterned SOI substrates. Opt Express, 27, 494(2019).
[71] Y Han, W K Ng, Y Xue et al. Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator. Opt Lett, 44, 767(2019).
Get Citation
Copy Citation Text
Wenyu Yang, Yajie Li, Fangyuan Meng, Hongyan Yu, Mengqi Wang, Pengfei Wang, Guangzhen Luo, Xuliang Zhou, Jiaoqing Pan. III–V compound materials and lasers on silicon[J]. Journal of Semiconductors, 2019, 40(10): 101305
Category: Reviews
Received: May. 28, 2019
Accepted: --
Published Online: Sep. 22, 2021
The Author Email: