Journal of Infrared and Millimeter Waves, Volume. 43, Issue 6, 806(2024)
Angular-tunable on-chip coding metasurface enabled by phase-change material with immersion liquid
[1] Hsiao H H, Chu C H, Tsai D P. Fundamentals and Applications of Metasurfaces[J]. Small Methods, 1, 1600064(2017).
[2] Khorasaninejad M, Capasso F. Metalenses: Versatile multifunctional photonic components[J]. Science, 358, eaam8100(2017).
[3] Wen D D, Yue F Y, Li G X et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 6, 8241(2015).
[4] Ou K, Li G H, Li T X et al. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces[J]. Nanoscale, 10, 19154-19161(2018).
[5] Raoux S, Ielmini D, Wuttig M et al. Phase change materials[J]. Mrs Bulletin, 37, 118-123(2012).
[6] Gong Z L, Yang F Y, Wang L T et al. Phase change materials in photonic devices[J]. Journal of Applied Physics, 129, 030902(2021).
[7] Xu J W, Tian X M, Ding P et al. Ge2Sb2Se4Te1-based multifunctional metalenses for polarization-independent, switchable and dual-mode focusing in the mid-infrared region[J]. Optics Express, 29, 44227-44238(2021).
[8] Michel A-K U, Zalden P, Chigrin D N et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses[J]. ACS Photonics, 1, 833-839(2014).
[9] De Galarreta C R, Alexeev A M, Au Y Y et al. Nonvolatile reconfigurable phase‐change metadevices for beam steering in the near infrared[J]. Advanced Functional Materials, 28, 1704993(2018).
[10] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).
[11] Liu C X, Yang F, Fu X J et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals[J]. Advanced Optical Materials, 9, 2100932(2021).
[12] Huang C, Sun B, Pan W B et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface[J]. Scientific Reports, 7, 42302(2017).
[13] Chen H, Lu W B, Liu Z G et al. Microwave programmable graphene metasurface[J]. ACS Photonics, 7, 1425-1435(2020).
[14] Huang X Y, Liu Z X, Lian Y et al. Dynamic beam all-direlectric coding metasurface converter based on phase change materials of GST[J]. Optics & Laser Technology, 159, 109037(2023).
[15] Lin Q W, Wong H, Huitema L et al. Coding metasurfaces with reconfiguration capabilities based on optical activation of phase‐change materials for terahertz beam manipulations[J]. Advanced Optical Materials, 10, 2101699(2021).
[16] Guo Y H, Pu M B, Li X et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 4700107(2018).
[17] Wang Z, Li T T, Soman A et al. On-chip wavefront shaping with dielectric metasurface[J]. Nature Communications, 10, 3547(2019).
[18] Yang R, Shi Y Y, Dai C J et al. On-chip metalenses based on one-dimensional gradient trench in the broadband visible[J]. Optics Letters, 45, 5640-5643(2020).
[19] Laskar J M, Kumar P S, Herminghaus S et al. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics[J]. Applied Optics, 55, 3165-3169(2016).
[20] Li Z, Wan C W, Dai C J et al. Actively switchable beam‐steering via hydrophilic/hydrophobic‐selective design of water‐immersed metasurface[J]. Advanced Optical Materials, 9, 2100297(2021).
[21] Yao J, Chen M K, Lin R et al. Tunable water‐based meta‐lens[J]. Advanced Optical Materials, 2300130(2023).
[22] He K, Tang T T, Bi L et al. Polarization-dependent reconfigurable light field manipulation by liquid-immersion metasurface[J]. Optics Express, 31, 13739-13750(2023).
[23] Wan S, Dai C J, Li Z et al. Toward water-immersion programmable meta-display[J]. Advanced Science, 10, 2205581(2022).
[24] Li Q T, van de Groep J, White A K et al. Metasurface optofluidics for dynamic control of light fields[J]. Nature Nanotechnology, 17, 1097-1103(2022).
[25] Li Z, Wan C W, Dai C J et al. Immersion-triggered active switch for spin-decoupled meta-optics multi-display[J]. Small, 18, 2205041(2022).
[26] Zhang Y F, Chou J B, Li J Y et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics[J]. Nature Communications, 10, 4279(2019).
[27] Shalaginov M Y, An S, Zhang Y et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 12, 1225(2021).
[28] Hou B B, Zhang L N. Liquid microdroplet as an optical component to achieve imaging of 100nm nanostructures on a far-field microscope[J]. Journal of optics, 20, 055606(2018).
[29] PRICHARD W H, ORVILLE-THOMAS W J. Infra-red dispersion studies Part 1.-dichloro-, dibromo-, and diiodomethane[J]. Transactions of the Faraday Society, 59, 2218-2227(1963).
[30] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[31] Cheng Q, Zhang L, Dai J Y et al. Reconfigurable intelligent surfaces: simplified-architecture transmitters—from theory to implementations[J]. Proceedings of the IEEE, 110, 1266-1289(2022).
[32] Wang H L, Zhang Y K, Zhang T Y et al. Broadband and programmable amplitude-phase-joint-coding information metasurface[J]. ACS applied materials & interfaces, 14, 29431-29440(2022).
Get Citation
Copy Citation Text
Xue-Nan LI, Zeng-Yue ZHAO, Fei-Long YU, Jin CHEN, Guan-Hai LI, Zhi-Feng LI, Xiao-Shuang CHEN. Angular-tunable on-chip coding metasurface enabled by phase-change material with immersion liquid[J]. Journal of Infrared and Millimeter Waves, 2024, 43(6): 806
Category: Infrared Optoelectronic System and Application Technology
Received: Feb. 2, 2024
Accepted: --
Published Online: Dec. 13, 2024
The Author Email: Zeng-Yue ZHAO (zhaozengyue@mail.sitp.ac.cn), Guan-Hai LI (ghli0120@mail.sitp.ac.cn), Xiao-Shuang CHEN (xschen@mail.sitp.ac.cn)