Chinese Optics, Volume. 16, Issue 3, 479(2023)

Recent progress of non-line-of-sight imaging reconstruction algorithms in typical imaging modalities

Lu-da ZHAO1,2、*, Xiao DONG1,2,3, Shi-long XU1,2,3, Yi-hua HU1,2,3、*, Xin-yuan ZHANG1,2,3, and Yi-cheng ZHONG4
Author Affiliations
  • 1College of Electronic Engineering, National University of Defence Technology, Hefei 230037, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, China
  • 3Anhui Province Key Laboratory of Electronic Restriction, National University of Defense Technology, Hefei 230037, China
  • 4Unit 77126 of the PLA, Kaiyuan 661600, China
  • show less
    Figures & Tables(16)
    Typical NLoS imaging modalities
    Classification of reconstruction algorithms of NLoS imaging
    Schematic diagrams of (a) three reflected light trajectories of NLoS imaging and (b) hidden object reconstruction principle (adapted from Ref. [8])
    Schematic diagram of the principle of the inverse ellipsoidal projection reconstruction algorithm[11]
    Schematic diagram of the hardware configuration for confocal NLoS imaging[29]
    Schematic diagram of the passive NLoS imaging system based on occlusion-enhanced imaging[49]
    Schematic diagram of NLoS imaging through intermediary wall corner penumbra
    Schematic diagram of the active NLoS imaging implementing process based on deep learning (adapted from Ref. [62])
    Schematic diagram of the NLoS imaging based on deep learning and optical transport matrices decomposition (adapted from Ref. [74])
    (a) Passive NLoS imaging and (b) implementing process of popular embedding and optimal transmission generated step by step based on deep learning (adapted from Ref. [84])
    Comparison of reconstruction results of 6 hidden scenes using ShapeNet and LCT algorithms[62]
    Comparison of reconstruction results of 3 hidden scenes using CNN and PR algorithms (HIO and Alt-Min)[72]
    An illustration of the NeTF network architecture [75]
    Comparison of reconstruction results of 6 hidden scenes using NeTF and traditional NLoS reconstruction algorithms (Phasor Field, F-K and DLCT)[75]
    Comparison of reconstruction results of 4 type of hidden scenes using NLOS-OT and U-Net, C-GAN[80]
    • Table 1. A multi-perspective summary and comparative analysis of different kinds of NLoS reconstruction SOTA algorithms

      View table
      View in Article

      Table 1. A multi-perspective summary and comparative analysis of different kinds of NLoS reconstruction SOTA algorithms

      算法分类SOTANLoS场景中的硬件任务重建质量重建速度实际应用 的差距
      传统 重建 算法 主动 NLoS 成像 基于时间信息①空间多路复用感知+ 压缩感知[19]②空间点扩散函数的优化[20]①数字微反射镜+SPAD ②SPAD阵列 2D重建①好 ②较好 较快较大
      基于光强逆优化[39]传统相机2D重建/跟踪/定位一般较快
      基于向量场衍射积分法[41]SPAD3D重建较好
      被动 NLoS 成像 基于光强①添加遮挡的优化[48]②优化墙角阴影[52]传统相机①2D重建 ②2D重建/定位 ①较好 ②好 一般
      基于偏振性逆优化[56]偏光器+传统相机2D重建一般
      基于相干性双谱+相位检索[58]遮挡板+阵列相机2D重建一般
      基于深度 学习的 重建算法 主动 NLoS 成像 基于端到端学习快速光场断层扫描+ 深度神经网络[64]条纹相机3D重建较好很快
      物理和深度学习 模型融合 ①神经瞬态场[75]②逆矩阵生成+ 深度神经网络[74]①SPAD ②传统相机 ①3D重建 ②2D重建 一般较大
      被动NLoS 成像 基于端到端学习最有传输理论+ 深度神经网络[80]传统相机2D重建很好
    Tools

    Get Citation

    Copy Citation Text

    Lu-da ZHAO, Xiao DONG, Shi-long XU, Yi-hua HU, Xin-yuan ZHANG, Yi-cheng ZHONG. Recent progress of non-line-of-sight imaging reconstruction algorithms in typical imaging modalities[J]. Chinese Optics, 2023, 16(3): 479

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: Aug. 24, 2022

    Accepted: Nov. 25, 2022

    Published Online: May. 31, 2023

    The Author Email:

    DOI:10.37188/CO.2022-0186

    Topics