Journal of Synthetic Crystals, Volume. 52, Issue 6, 960(2023)
Basic Materials and Devices of the Deterministic Solid-State Quantum Light Sources
[1] [1] FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6): 467-488.
[2] [2] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings 35th Annual Symposium on Foundations of Computer Science. November 20-22, 1994, Santa Fe, NM, USA. IEEE, 2002: 124-134.
[3] [3] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing. May 22 - 24, 1996, Philadelphia, Pennsylvania, USA. New York: ACM, 1996: 212-219.
[4] [4] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[5] [5] BENNETT C H, BRASSARD G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560: 7-11.
[6] [6] EKERT A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 1991, 67(6): 661-663.
[7] [7] YIN J, CAO Y, LI Y H, et al. Satellite-to-ground entanglement-based quantum key distribution[J]. Physical Review Letters, 2017, 119(20): 200501.
[8] [8] DOWLING J P, MILBURN G J. Quantum technology: the second quantum revolution[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361(1809): 1655-1674.
[10] [10] KNILL E, LAFLAMME R, ZUREK W H. Resilient quantum computation[J]. Science, 1998, 279(5349): 342-345.
[11] [11] KOK P, MUNRO W J, NEMOTO K, et al. Linear optical quantum computing with photonic qubits[J]. Reviews of Modern Physics, 2007, 79(1): 135-174.
[12] [12] TOMM N. A quantum dot in a microcavity as a bright source of coherent single photons[D/OL]//University of Basel, 2021. DOI:10.5451/unibas-ep84050.
[13] [13] SLUSSARENKO S, PRYDE G J. Photonic quantum information processing: a concise review[J]. Applied Physics Reviews, 2019, 6(4): 041303.
[14] [14] SENELLART P, SOLOMON G, WHITE A. High-performance semiconductor quantum-dot single-photon sources[J]. Nature Nanotechnology, 2017, 12(11): 1026-1039.
[15] [15] ARAKAWA Y, HOLMES M J. Progress in quantum-dot single photon sources for quantum information technologies: a broad spectrum overview[J]. Applied Physics Reviews, 2020, 7(2): 021309.
[17] [17] ANDERSEN U L, GEHRING T, MARQUARDT C, et al. 30 years of squeezed light generation[J]. Physica Scripta, 2016, 91(5): 053001.
[18] [18] DING X, HE Y, DUAN Z C, et al. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar[J]. Physical Review Letters, 2016, 116(2): 20401.
[19] [19] WANG H, HE Y M, CHUNG T H, et al. Towards optimal single-photon sources from polarized microcavities[J]. Nature Photonics, 2019, 13(11): 770-775.
[20] [20] CHEN Y, ZOPF M, KEIL R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna[J]. Nature Communications, 2018, 9: 2994.
[22] [22] HAMBURY BROWN R, TWISS R Q. Correlation between photons in two coherent beams of light[J]. Physical Review Letters, 1987, 59(18): 2044-2046.
[23] [23] SPRING J B, METCALF B J, HUMPHREYS P C, et al. Boson sampling on a photonic chip[J]. Science, 2013, 339(6121): 798-801.
[24] [24] ROHDE P P. Optical quantum computing with photons of arbitrarily low fidelity and purity[J]. Physical Review A, 2012, 86(5): 52321.
[25] [25] HONG C K, OU Z Y, MANDEL L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046.
[26] [26] XIANG Y, XIONG S J. Entanglement fidelity and measurement of entanglement preservation in quantum processes[J]. Physical Review A, 2007, 76(1): 14301.
[27] [27] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865-942.
[28] [28] JAMES D F V, KWIAT P G, MUNRO W J, et al. Measurement of qubits[J]. Physical Review A, 2001, 64(5): 52312.
[29] [29] KCK S. Single photon sources for absolute radiometry-A review about the current state of the art[J]. Measurement: Sensors, 2021, 18: 100219.
[30] [30] WANG X B, PENG C Z, ZHANG J, et al. General theory of decoy-state quantum cryptography with source errors[J]. Physical Review A, 2008, 77(4): 42311.
[32] [32] CHENG B, DENG X H, GU X, et al. Noisy intermediate-scale quantum computers[J]. Frontiers of Physics, 2023, 18(2): 1-62.
[33] [33] KANEDA F, CHRISTENSEN B G, WONG J J, et al. Time-multiplexed heralded single-photon source[J]. Optica, 2015, 2(12): 1010-1013.
[34] [34] WANG J F, ZHOU Y, WANG Z Y, et al. Bright room temperature single photon source at telecom range in cubic silicon carbide[J]. Nature Communications, 2018, 9: 4106.
[35] [35] GAN L, ZHANG D Y, ZHANG R L, et al. Large-scale, high-yield laser fabrication of bright and pure single-photon emitters at room temperature in hexagonal boron nitride[J]. ACS Nano, 2022, 16(9): 14254-14261.
[36] [36] RAIN G, YAZDANI N, BOEHME S C, et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots[J]. Nature Communications, 2022, 13: 2587.
[37] [37] NELIUBOV A Y, EREMCHEV I Y, DRACHEV V P, et al. Enigmatic color centers in microdiamonds with bright, stable, and narrow-band fluorescence[J]. Physical Review B, 2023, 107(8): L081406.
[38] [38] TOMM N, JAVADI A, ANTONIADIS N O, et al. A bright and fast source of coherent single photons[J]. Nature Nanotechnology, 2021, 16(4): 399-403.
[39] [39] WANG H, QIN J, CHEN S, et al. Observation of Intensity Squeezing in Resonance Fluorescence from a Solid-State Device[J]. Physical Review Letters, 2020, 125(15): 153601.
[40] [40] LIU F, BRASH A J, O’HARA J, et al. High Purcell factor generation of indistinguishable on-chip single photons[J]. Nature Nanotechnology, 2018, 13(9): 835-840.
[41] [41] KUHLMANN A V, PRECHTEL J H, HOUEL J, et al. Transform-limited single photons from a single quantum dot[J]. Nature Communications, 2015, 6: 8204.
[42] [42] WEI Y J, HE Y M, CHEN M C, et al. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage[J]. Nano Letters, 2014, 14(11): 6515-6519.
[43] [43] SCHWEICKERT L, JNS K D, ZEUNER K D, et al. On-demand generation of background-free single photons from a solid-state source[J]. Applied Physics Letters, 2018, 112(9): 093106.
[44] [44] AHARONOVICH I, ENGLUND D, TOTH M. Solid-state single-photon emitters[J]. Nature Photonics, 2016, 10(10): 631-641.
[45] [45] KIMBLE H J, DAGENAIS M, MANDEL L. Photon antibunching in resonance fluorescence[J]. Physical Review Letters, 1977, 39(11): 691-695.
[46] [46] DIEDRICH F, WALTHER H. Nonclassical radiation of a single stored ion[J]. Physical Review Letters, 1987, 58(3): 203-206.
[47] [47] HE Y M, IFF O, LUNDT N, et al. Cascaded emission of single photons from the biexciton in monolayered WSe2[J]. Nature Communications, 2016, 7: 13409.
[48] [48] TURUNEN M, BROTONS-GISBERT M, DAI Y Y, et al. Quantum photonics with layered 2D materials[J]. Nature Reviews Physics, 2022, 4(4): 219-236.
[49] [49] LOUNIS B, MOERNER W E. Single photons on demand from a single molecule at room temperature[J]. Nature, 2000, 407(6803): 491-493.
[50] [50] FARAON A, BARCLAY P E, SANTORI C, et al. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity[J]. Nature Photonics, 2011, 5(5): 301-305.
[51] [51] KARLSSON K F, DUPERTUIS M A, OBERLI D Y, et al. Fine structure of exciton complexes in high-symmetry quantum dots: Effects of symmetry breaking and symmetry elevation[J]. Physical Review B, 2010, 81(16): 161307.
[52] [52] BAYER M, ORTNER G, STERN O, et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots[J]. Physical Review B, 2002, 65(19): 195315.
[54] [54] LIU J, SU R B, WEI Y M, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability[J]. Nature Nanotechnology, 2019, 14(6): 586-593.
[55] [55] LIU S, ZHOU S J, WANG K, et al. Several co-design issues using DfX for solid state lighting[C]//2011 12th International Conference on Electronic Packaging Technology and High Density Packaging. August 8-11, 2011. Shanghai, China. IEEE, 2011.
[56] [56] MANASEVIT H M. Single-crystal gallium arsenide on insulating substrates[J]. Applied Physics Letters, 1968, 12(4): 156-159.
[57] [57] PAUL M, OLBRICH F, HSCHELE J, et al. Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/GaAs metamorphic buffers[J]. Applied Physics Letters, 2017, 111(3): 033102.
[58] [58] MLLER T, SKIBA-SZYMANSKA J, KRYSA A B, et al. A quantum light-emitting diode for the standard telecom window around 1, 550 nm[J]. Nature Communications, 2018, 9: 862.
[59] [59] SITTIG R, NAWRATH C, KOLATSCHEK S, et al. Thin-film InGaAs metamorphic buffer for telecom C-band InAs quantum dots and optical resonators on GaAs platform[J]. Nanophotonics, 2022, 11(6): 1109-1116.
[60] [60] GODEJOHANN B J, TURE E, MLLER S, et al. AlN/GaN HEMTs grown by MBE and MOCVD: impact of Al distribution[J]. Physica Status Solidi (b), 2017, 254(8): 1600715.
[61] [61] HUO Y H, KRFIPEK V, RASTELLI A, et al. Volume dependence of excitonic fine structure splitting in geometrically similar quantum dots[J]. Phys Rev B, 2014, 90(4): 41304.
[62] [62] WANG S J, QIN F W, BAI Y Z, et al. Impact of the deposition temperature on the structural and electrical properties of InN films grown on self-standing diamond substrates by low-temperature ECR-MOCVD[J]. Coatings, 2020, 10(12): 1185.
[63] [63] NAWRATH C, OLBRICH F, PAUL M, et al. Coherence and indistinguishability of highly pure single photons from non-resonantly and resonantly excited telecom C-band quantum dots[J]. Applied Physics Letters, 2019, 115(2): 023103.
[64] [64] NAWRATH C, VURAL H, FISCHER J, et al. Resonance fluorescence of single In(Ga)As quantum dots emitting in the telecom C-band[J]. Applied Physics Letters, 2021, 118(24): 244002.
[65] [65] CHO A Y, ARTHUR J R. Molecular beam epitaxy[J]. Progress in Solid State Chemistry, 1975, 10: 157-191.
[67] [67] VAN DER MERWE J H. Theoretical considerations in growing uniform epilayers[J]. Interface Science, 1993, 1(1): 77-86.
[68] [68] LEONARD D, POND K, PETROFF P M. Critical layer thickness for self-assembled InAs islands on GaAs[J]. Physical Review B, 1994, 50(16): 11687-11692.
[69] [69] AANAND A, DONGRE S, GAZI S A, et al. Effect of substrate temperature variation on the structural and optical properties of self assembled InAs quantum dots[C]//SPIE Nanoscience + Engineering. Proc SPIE 11085, Low-Dimensional Materials and Devices 2019, San Diego, California, USA. 2019, 11085: 128-135.
[70] [70] CHU L, ARZBERGER M, BHM G, et al. Influence of growth conditions on the photoluminescence of self-assembled InAs/GaAs quantum dots[J]. Journal of Applied Physics, 1999, 85(4): 2355-2362.
[71] [71] FLTH J F, YOON S F, FITZGERALD E A. The influence of substrate temperature on InAsN quantum dots grown by molecular beam epitaxy[J]. Nanotechnology, 2008, 19(45): 455606.
[72] [72] JOYCE P B, KRZYZEWSKI T J, BELL G R, et al. Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy[J]. Physical Review B, 2000, 62(16): 10891-10895.
[73] [73] MURRAY R, CHILDS D, MALIK S, et al. 1.3 μm room temperature emission from InAs/GaAs self-assembled quantum dots[J]. Japanese Journal of Applied Physics, 1999, 38(1S): 528.
[74] [74] LEE K S, OH G, KIM E K, et al. Temperature dependent photoluminescence from InAs/GaAs quantum dots grown by molecular beam epitaxy[J]. Applied Science and Convergence Technology, 2017, 26(4): 86-90.
[75] [75] AGARWAL A, AANAND A, GAZI S A, et al. The effects of V-III ratio on structural and optical properties of self-assembled InAs quantum dots[C]∥SPIE Nanoscience+Engineering. Proc SPIE 11085, Low-Dimensional Materials and Devices 2019, San Diego, California, USA. 2019, 11085: 102-110.
[76] [76] DUAN L M, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862): 413-418.
[77] [77] SANGOUARD N, SIMON C, DE RIEDMATTEN H, et al. Quantum repeaters based on atomic ensembles and linear optics[J]. Rev Mod Phys, 2011, 83(1): 33-80.
[78] [78] WATANABE K, KOGUCHI N, GOTOH Y. Fabrication of GaAs quantum dots by modified droplet epitaxy[J]. Japanese Journal of Applied Physics, 2000, 39(2A): L79.
[79] [79] WANG Z M, HOLMES K, MAZUR Y I, et al. Self-organization of quantum-dot pairs by high-temperature droplet epitaxy[J]. Nanoscale Research Letters, 2006, 1(1): 57.
[80] [80] KOGUCHI N, TAKAHASHI S, CHIKYOW T. New MBE growth method for InSb quantum well boxes[J]. Journal of Crystal Growth, 1991, 111(1): 688-692.
[81] [81] MANO T, ABBARCHI M, KURODA T, et al. Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy[J]. Nanotechnology, 2009, 20(39): 395601.
[82] [82] LANGER F B, PLISCHKE D, KAMP M, et al. Single photon emission of a charge-tunable GaAs/Al0.25Ga0.75As droplet quantum dot device[J]. Applied Physics Letters, 2014, 105(8): 081111.
[83] [83] BASSO BASSET F, BIETTI S, REINDL M, et al. High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy[J]. Nano Letters, 2018, 18(1): 505-512.
[84] [84] ABBARCHI M, TROIANI F, MASTRANDREA C, et al. Spectral diffusion and line broadening in single self-assembled GaAsAlGaAs quantum dot photoluminescence[J]. Applied Physics Letters, 2008, 93(16): 162101.
[85] [85] HUO Y H, RASTELLI A, SCHMIDT O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate[J]. Applied Physics Letters, 2013, 102(15): 152105.
[86] [86] HUBER D, REINDL M, HUO Y H, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots[J]. Nature Communications, 2017, 8: 15506.
[87] [87] HUO Y H, KRFIPEK V, RASTELLI A, et al. Volume dependence of excitonic fine structure splitting in geometrically similar quantum dots[J]. Physical Review B, 2014, 90(4): 41304.
[88] [88] WANG J F, JORGENSEN K F, FARZANA E, et al. Impact of growth parameters on the background doping of GaN films grown by ammonia and plasma-assisted molecular beam epitaxy for high-voltage vertical power switches[J]. APL Materials, 2021, 9(8): 081118.
[89] [89] LARKINS E C, HELLMAN E S, SCHLOM D G, et al. GaAs with very low acceptor impurity background grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 1987, 81(1): 344-348.
[90] [90] HOUEL J, KUHLMANN A V, GREUTER L, et al. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot[J]. Physical Review Letters, 2012, 108(10): 107401.
[91] [91] NGUYEN G N, KORSCH A R, SCHMIDT M, et al. Influence of molecular beam effusion cell quality on optical and electrical properties of quantum dots and quantum wells[J]. Journal of Crystal Growth, 2020, 550: 125884.
[92] [92] NAJER D, TOMM N, JAVADI A, et al. Suppression of surface-related loss in a gated semiconductor microcavity[J]. Physical Review Applied, 2021, 15(4): 044004.
[93] [93] LBL M C, SLLNER I, JAVADI A, et al. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode[J]. Physical Review B, 2017, 96(16): 165440.
[94] [94] DAPKUS P D. A critical comparison of MOCVD and MBE for heterojunction devices[J]. Journal of Crystal Growth, 1984, 68(1): 345-355.
[95] [95] HERMAN M A, SITTER H. Molecular beam epitaxy: fundamentals and current status[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996.
[96] [96] LI L H, ZHU J X, CHEN L, et al. The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers[J]. Optics Express, 2015, 23(3): 2720-2729.
[97] [97] WASILEWSKI Z R, FAFARD S, MCCAFFREY J P. Size and shape engineering of vertically stacked self-assembled quantum dots[J]. Journal of Crystal Growth, 1999, 201-202: 1131-1135.
[98] [98] SASAKURA H, KAYAMORI S, ADACHI S, et al. Effect of indium-flush method on the control of photoluminescence energy of highly uniform self-assembled InAs quantum dots by slow molecular beam epitaxy growth[J]. Journal of Applied Physics, 2007, 102(1): 013515.
[99] [99] LBL M C, SCHOLZ S, SLLNER I, et al. Excitons in InGaAs quantum dots without electron wetting layer states[J]. Communications Physics, 2019, 2: 93.
[100] [100] GRYDLIK M, LANGER G, FROMHERZ T, et al. Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates[J]. Nanotechnology, 2013, 24(10): 105601.
[101] [101] HEYN C. Critical coverage for strain-induced formation of InAs quantum dots[J]. Physical Review B, 2001, 64(16): 165306.
[102] [102] BART N, DANGEL C, ZAJAC P, et al. Wafer-scale epitaxial modulation of quantum dot density[J]. Nature Communications, 2022, 13: 1633.
[103] [103] PURCELL E M. Spontaneous emission probabilities at radio frequencies BT-confined electrons and photons: new physics and applications[M]. Boston, MA: Springer US, 1995: 839.
[104] [104] RCARI M, SLLNER I, JAVADI A, et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide[J]. Physical Review Letters, 2014, 113(9): 93603.
[105] [105] BARBOUR R J, DALGARNO P A, CURRAN A, et al. A tunable microcavity[J]. Journal of Applied Physics, 2011, 110(5): 053107.
[106] [106] GREEN W M J, SCHEUER J, DEROSE G, et al. Vertically emitting annular Bragg lasers using polymer epitaxial transfer[J]. Applied Physics Letters, 2004, 85(17): 3669-3671.
[107] [107] HE Y M, LIU J, MAIER S, et al. Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging[J]. Optica, 2017, 4(7): 802-808.
[108] [108] SAPIENZA L, DAVANO M, BADOLATO A, et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission[J]. Nature Communications, 2015, 6: 7833.
[109] [109] LI L Z, CHEN E H, ZHENG J B, et al. Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating[J]. Nano Letters, 2015, 15(3): 1493-1497.
[110] [110] MOHAN A, FELICI M, GALLO P, et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots[J]. Nature Photonics, 2010, 4: 302-306.
[111] [111] HUBER D, REINDL M, COVRE DA SILVA S F, et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand[J]. Physical Review Letters, 2018, 121(3): 33902.
[112] [112] HUANG H, CSONTOSOV D, MANNA S, et al. Electric field induced tuning of electronic correlation in weakly confining quantum dots[J]. Physical Review B, 2021, 104(16): 165401.
[113] [113] SCHIMPF C, MANNA S, DA SILVA S F C, et al. Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 K[J]. Advanced Photonics, 2021, 3(6): 065001.
[114] [114] DAVANO M, HELLBERG C S, ATES S, et al. Multiple time scale blinking in InAs quantum dot single-photon sources[J]. Physical Review B, 2014, 89(16): 161303.
[115] [115] ZHAI L A, LBL M C, NGUYEN G N, et al. Low-noise GaAs quantum dots for quantum photonics[J]. Nature Communications, 2020, 11: 4745.
[116] [116] ZHOU L, BO B X, YAN X Z, et al. Brief review of surface passivation on III-V semiconductor[J]. Crystals, 2018, 8(5): 226.
[117] [117] MANNA S, HUANG H, DA SILVA S F C, et al. Surface passivation and oxide encapsulation to improve optical properties of a single GaAs quantum dot close to the surface[J]. Applied Surface Science, 2020, 532: 147360.
[118] [118] GUHA B, MARSAULT F, CADIZ F, et al. Surface-enhanced gallium arsenide photonic resonator with quality factor of 6×106[J]. Optica, 2017, 4(2): 218-221.
[119] [119] LIU J, KONTHASINGHE K, DAVANO M, et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication[J]. Physical Review Applied, 2018, 9(6): 064019.
[120] [120] MANASEVIT H M. Single-crystal gallium arsenide on insulating substrates[J]. Applied Physics Letters, 1968, 12(4): 156-159.
[121] [121] KURUMA K, OTA Y, KAKUDA M, et al. Surface-passivated high-Q GaAs photonic crystal nanocavity with quantum dots[J]. APL Photonics, 2020, 5(4): 046106.
[122] [122] O’CONNOR, BRENNAN B, DJARA V, et al. A systematic study of (NH4)2S passivation (22%, 10%, 5%, or 1%) on the interface properties of the Al2O3/In0.53Ga0.47As/InP system for n-type and p-type In0.53Ga0.47As epitaxial layers[J]. Journal of Applied Physics, 2011, 109(2): 024101.
[123] [123] CHELLU A, KOIVUSALO E, RAAPPANA M, et al. GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices[J]. Nanotechnology, 2021, 32(13): 130001.
[124] [124] DORSTEN J F, MASLAR J E, BOHN P W. Near-surface electronic structure in GaAs (100) modified with self-assembled monolayers of octadecylthiol[J]. Applied Physics Letters, 1995, 66(14): 1755-1757.
[125] [125] ZHOU L, CHU X F, CHI Y D, et al. Property improvement of GaAs surface by 1-octadecanethiol passivation[J]. Crystals, 2019, 9(3): 130.
[126] [126] CAO X, YANG J Z, LI P J, et al. Single photon emission from ODT passivated near-surface GaAs quantum dots[J]. Applied Physics Letters, 2021, 118(22): 221107.
[127] [127] ALEKSEEV P A, DUNAEVSKIY M S, ULIN V P, et al. Nitride surface passivation of GaAs nanowires: impact on surface state density[J]. Nano Letters, 2015, 15(1): 63-68.
[128] [128] BERKOVITS V L, GORDEEVA A B, L’VOVA T V, et al. Nitride and sulfide chemisorbed layers as the surface passivants for A3B5 semiconductors[C]//KERVALISHVILI P, YANNAKOPOULOS P. Nuclear Radiation Nanosensors and Nanosensory Systems. Dordrecht: Springer, 2016: 61-79.
[129] [129] LIU Z H, NG G I, ZHOU H, et al. Reduced surface leakage current and trapping effects in AlGaN/GaN high electron mobility transistors on silicon with SiN/Al2O3 passivation[J]. Applied Physics Letters, 2011, 98(11): 113506.
[130] [130] YEN C F, LEE M K, LEE J C. Electrical characteristics of Al2O3/TiO2/Al2O3 prepared by atomic layer deposition on (NH4)2S-treated GaAs[J]. Solid-State Electronics, 2014, 92: 1-4.
[132] [132] HE Y M, HE Y, WEI Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability[J]. Nature Nanotechnology, 2013, 8(3): 213-217.
[133] [133] WANG H, DUAN Z C, LI Y H, et al. Near-transform-limited single photons from an efficient solid-state quantum emitter[J]. Physical Review Letters, 2016, 116(21): 213601.
[134] [134] LODAHL P, MAHMOODIAN S, STOBBE S. Interfacing single photons and single quantum dots with photonic nanostructures[J]. Reviews of Modern Physics, 2015, 87(2): 347-400.
[135] [135] WANG H, HE Y, LI Y H, et al. High-efficiency multiphoton boson sampling[J]. Nature Photonics, 2017, 11(6): 361-365.
[136] [136] BRIEGEL H J, DR W, CIRAC J I, et al. Quantum repeaters: the role of imperfect local operations in quantum communication[J]. Physical Review Letters, 1998, 81(26): 5932-5935.
[137] [137] YOU X, ZHENG M Y, CHEN S, et al. Quantum interference with independent single-photon sources over 300 km fiber[J]. Advanced Photonics, 2022, 4(6): 066003.
[138] [138] BENNETT C H, BRASSARD G, CRPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895-1899.
[140] [140] TAKEMOTO K, NAMBU Y, MIYAZAWA T, et al. Transmission experiment of quantum keys over 50 km using high-performance quantum-dot single-photon source at 1.5 μm wavelength[J]. Applied Physics Express, 2010, 3(9): 092802.
[141] [141] RAU M, HEINDEL T, UNSLEBER S, et al. Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources: a proof of principle experiment[J]. New Journal of Physics, 2014, 16(4): 043003.
[142] [142] BASSO BASSET F, VALERI M, ROCCIA E, et al. Quantum key distribution with entangled photons generated on demand by a quantum dot[J]. Science Advances, 2021, 7(12): eabe6379.
[143] [143] VAJNER D A, RICKERT L, GAO T, et al. Quantum communication using semiconductor quantum dots[J]. Advanced Quantum Technologies, 2022, 5(7): 2100116.
[144] [144] PAN J W, CHEN Z B, LU C Y, et al. Multiphoton entanglement and interferometry[J]. Reviews of Modern Physics, 2012, 84(2): 777-838.
[145] [145] AARONSON S, ARKHIPOV A. The computational complexity of linear optics[C]//Proceedings of the forty-third annual ACM symposium on Theory of computing. June 6 - 8, 2011, San Jose, California, USA. New York: ACM, 2011: 333-342.
[146] [146] WANG H, QIN J, DING X, et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional hilbert space[J]. Physical Review Letters, 2019, 123(25): 250503.
[147] [147] HUH J, GUERRESCHI G G, PEROPADRE B, et al. Boson sampling for molecular vibronic spectra[J]. Nature Photonics, 2015, 9(9): 615-620.
[148] [148] BROD D J, GALVO E F, CRESPI A, et al. Photonic implementation of boson sampling: a review[J]. Advanced Photonics, 2019, 1(3): 34001.
[149] [149] CHEN Y Y, FINK M, STEINLECHNER F, et al. Hong-Ou-Mandel interferometry on a biphoton beat note[J]. NPJ Quantum Information, 2019, 5: 43.
[150] [150] SHI H, ZHANG Z, PIRANDOLA S, et al. Entanglement-assisted absorption spectroscopy[J]. Physical Review Letters, 2020, 125(18): 180502.
[151] [151] LI J P, QIN J A, CHEN A, et al. Multiphoton graph states from a solid-state single-photon source[J]. ACS Photonics, 2020, 7(7): 1603-1610.
[152] [152] ISTRATI D, PILNYAK Y, LOREDO J C, et al. Sequential generation of linear cluster states from a single photon emitter[J]. Nature Communications, 2020, 11: 5501.
[153] [153] LIU R Z, QIAO Y K, ZHONG H S, et al. Eliminating temporal correlation in quantum-dot entangled photon source by quantum interference[EB/OL]. 2022: arXiv: 2212.13126. https://arxiv.org/abs/2212.13126
[154] [154] LEN-MONTIEL R de J, SVOZILK J, TORRES J P, et al. Temperature-controlled entangled-photon absorption spectroscopy[J]. Physical Review Letters, 2019, 123(2): 23601.
[155] [155] CHEN Y, HONG L, CHEN L. Quantum interferometric metrology with entangled photons[J/OL]. Frontiers in Physics, 2022, 10. https://www.frontiersin.org/articles/10.3389/fphy.2022.892519. DOI:10.3389/fphy.2022.892519.
Get Citation
Copy Citation Text
ZHAO Junyi, LIU Runze, LOU Yiyang, HUO Yongheng. Basic Materials and Devices of the Deterministic Solid-State Quantum Light Sources[J]. Journal of Synthetic Crystals, 2023, 52(6): 960
Category:
Received: Apr. 9, 2023
Accepted: --
Published Online: Aug. 13, 2023
The Author Email: ZHAO Junyi (junyi98@mail.ustc.edu.cn)
CSTR:32186.14.