Acta Optica Sinica, Volume. 36, Issue 10, 1023001(2016)
Photoemission Performance Analysis of GaAs Photocathodes with Different Doping Concentrations
[1] [1] Drouhin H J, Hermann C, Lampel G. Photoemission from activated gallium arsenide. I. Very-high-resolution energy distribution curves[J]. Phys Rev B, 1985, 31(6): 3859-3871.
[2] [2] Bourree L E, Chasse D R, Thamban P S, et al. Comparison of the optical characteristics of GaAs photocathodes grown using MBE and MOCVD[C]. SPIE, 2003, 4796: 11-22.
[3] [3] Liu Z, Sun Y, Peterson S, et al. Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes[J]. Appl Phys Lett, 2008, 92(24): 241107.
[4] [4] Sun Y, Kirby R E, Maruyama T, et al. The surface activation layer of GaAs negative electron affinity photocathode activated by Cs, Li, and NF3[J]. Appl Phys Lett, 2009, 95(17): 174109.
[5] [5] Machuca F, Liu Z, Sun Y, et al. Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes[J]. J Vac Sci Technol B, 2003, 21(4): 1863-1869.
[6] [6] Karkare S, Bazarov I. Effect of nanoscale surface roughness on transverse energy spread from GaAs photocathodes[J]. Appl Phys Lett, 2011, 98(9): 094104.
[7] [7] Zhao J, Shen W K, Chang B K, et al. Comparison of module structure of wideband response GaAs photocathode grown by MBE and MOCVD[J]. Opt Commun, 2014, 328: 129-134.
[8] [8] Chen L, Shen Y, Zhang S Q, et al. Comparative research on reflection-mode GaAs photocathode with graded AlxGa1-xAs buffer layer[J]. Opt Commun, 2015, 355: 186-190.
[10] [10] Chen Liang, Qian Yunsheng,Chang Benkang, et al. Research on surface photovoltage spectroscopy for exponential doping transmission-mode GaAs photocathodes[J]. Chinese J Lasers, 2011, 38(9): 0906002.
[11] [11] Zou J J, Yang Z, Qiao J L, et al. Activation experiments and quantum efficiency theory on gradient-doping NEA GaAs photocathodes[C]. SPIE, 2007, 6782: 67822R.
[12] [12] Zhang Y J, Niu J, Zou J J, et al. Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process[J]. Appl Opt, 2010, 49(20): 3935-3940.
[13] [13] Chen L, Qian Y S, Zhang Y J, et al. Comparative research for transmission-mode GaAs photocathodes of different doping structures on surface photovoltage[J]. Opt Commun, 2011, 284(19): 4520-4524.
[14] [14] Farsakoglu O F, Zengin D M, Kocabas H. Determination of some main parameters for quantum values of GaAlAs/GaAs transmission-mode photocathodes in near-ir region[J]. Opt Eng, 1993, 32(5): 1105-1113.
[15] [15] Zhang Y J, Niu J, Zhao J, et al. Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes[J]. J Appl Phys, 2010, 108(9): 093108.
[16] [16] Niu J, Zhang Y J, Chang B K, et al. Influence of exponential doping structure on the performance of GaAs photocathodes[J]. Appl Opt, 2009, 48(29): 5445-5450.
[17] [17] Zhao J, Chang B K, Xiong Y J, et al. Spectral transmittance and module structure fitting for transmission-mode GaAs photocathode[J]. Chinese Phys B, 2011, 20(4): 047801.
[18] [18] Antypas G A, Escher J S, Edgecumbe J, et al. Broadband GaAs transmission photocathode[J]. J Appl Phys, 1978, 49(7): 4301.
[19] [19] Sun Y, Liu Z, Pianetta P, et al. Formation of cesium peroxide and cesium superoxide on InP photocathode activated by cesium and oxygen[J]. J Appl Phys, 2007, 102 (7): 074908.
Get Citation
Copy Citation Text
Zhao Jing, Qin Cui, Liu Weiwei, Yu Huilong, Qu Wenting, Chang Benkang, Zhang Yijun. Photoemission Performance Analysis of GaAs Photocathodes with Different Doping Concentrations[J]. Acta Optica Sinica, 2016, 36(10): 1023001
Category:
Received: Apr. 25, 2016
Accepted: --
Published Online: Oct. 12, 2016
The Author Email: Jing Zhao (zhaojing7319@njit.edu.cn)