Laser & Optoelectronics Progress, Volume. 58, Issue 8, 0810010(2021)

Hyperspectral Images Classification Based on Multi-Feature Fusion and Hybrid Convolutional Neural Networks

Fan Feng, Shuangting Wang, Jin Zhang, and Chunyang Wang*
Author Affiliations
  • School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
  • show less
    Figures & Tables(13)
    Comparison of R-HybridSN and M-HybridSN modules. (a) Multi-scale convolutional layer of the first layer of R-HybridSN; (b) non-identical residual connection of the R-HybridSN; (c) multi-feature fusion module of the M-HybridSN
    Structure of the M-HybridSN
    Classification results of the data set IP
    Classification results of the data set SA
    Classification results of the data set PU
    Comparative experiment results under different conditions of the non-identical residual connection
    • Table 1. Distribution situation of the data set IP

      View table

      Table 1. Distribution situation of the data set IP

      No.CategoryLabeled sampleTrainingValidationTesting
      1alfalfa462341
      2corn-notill142871721285
      3corn-mintill8304241747
      4corn2371212213
      5grass-pasture4832424435
      6grass-trees7303637657
      7grass-pasture-mowed282125
      8hay-windrowed4782424430
      9oats201118
      10soybean-notill9724849875
      11soybean-mintill24551231222210
      12soybean-clean5933029534
      13wheat2051010185
      14woods126563631139
      15buildings-grass-trees-drives3861920347
      16stone-steel-towers935484
      Total102495125129225
    • Table 2. Distribution situation of the data set SA

      View table

      Table 2. Distribution situation of the data set SA

      No.CategoryLabeled sampleTrainingValidationTesting
      1brocoli_green_weeds_1200920201969
      2brocoli_green_weeds_2372637373652
      3fallow197620201936
      4fallow_rough_plow139414141366
      5fallow_smooth267827272624
      6stubble395939403880
      7celery357936363507
      8grapes_untrained1127111311211046
      9soil_vinyard_develop620362626079
      10corn_senesced_green_weeds327833333212
      11lettuce_romaine_4wk106811101047
      12lettuce_romaine_5wk192719201888
      13lettuce_romaine_6wk91699898
      14lettuce_romaine_7wk107011101049
      15vinyard_untrained726872737123
      16vinyard_vertical_trellis180718181771
      Total5412954154153047
    • Table 3. Distribution situation of the data set PU

      View table

      Table 3. Distribution situation of the data set PU

      No.CategoryLabeled sampleTrainingValidationTesting
      1asphalt663166666499
      2meadows1864918618618277
      3gravel209921212057
      4trees306430313003
      5painted metal sheets134514131318
      6bare Soil502950504929
      7bitumen133014131303
      8self-blocking bricks368237373608
      9shadows947910928
      Total4277642742741922
    • Table 4. Parameter number and input data scale of different models

      View table

      Table 4. Parameter number and input data scale of different models

      ModelRes-2D-CNNRes-3D-CNNHybridSNR-HybridSNM-HybridSN
      Parameter number10653602311845122176719112659296
      Input data scale5×5×2009×9×20025×25×3015×15×1615×15×16
    • Table 5. Classification results of the data set IP by different models unit: %

      View table

      Table 5. Classification results of the data set IP by different models unit: %

      No.Res-2D-CNNRes-3D-CNNHybridSNR-HybridSNM-HybridSN
      19.5123.7858.5458.1765.61
      272.3983.7393.0894.9895.28
      360.3176.5396.5797.3897.36
      437.8653.4775.0992.1694.51
      580.1493.5494.0096.6897.01
      694.0096.5497.1999.0898.63
      734.6071.2082.4094.0099.80
      899.1398.6698.7399.8199.93
      No.Res-2D-CNNRes-3D-CNNHybridSNR-HybridSNM-HybridSN
      93.8967.5083.8963.0676.67
      1078.4285.7594.2795.8196.58
      1184.1290.0297.9398.3198.55
      1254.1963.4084.4992.4391.97
      1385.1688.4392.6898.4697.41
      1489.4497.4897.9699.2599.03
      1552.9879.3583.1892.5296.80
      1680.5493.6383.3398.2195.54
      Kappa74.0 ± 2.884.5 ± 2.493.4 ± 1.296.3 ± 0.696.7 ± 0.4
      OA77.28 ± 2.3386.42 ± 2.1394.26 ± 1.0896.74 ± 0.5297.09 ± 0.38
      AA63.54 ± 4.6678.94 ± 3.2288.33 ± 2.4091.90 ± 2.5893.79 ± 1.99
    • Table 6. Classification results of the data set SA by different models unit: %

      View table

      Table 6. Classification results of the data set SA by different models unit: %

      No.Res-2D-CNNRes-3D-CNNHybridSNR-HybridSNM-HybridSN
      166.0997.1399.98100.0099.92
      299.3699.9299.9799.9699.99
      361.7993.0099.8299.6299.56
      499.1999.0997.3998.8799.22
      594.6297.7598.7998.8399.21
      699.9599.9799.7899.9099.91
      797.3498.2499.7799.8899.91
      882.9987.6699.0498.3398.96
      999.1999.58100.0099.9999.96
      1085.8191.1698.9898.0698.89
      1183.7390.8398.9598.6298.83
      1298.3299.2099.0999.8899.29
      1395.2397.8897.2892.4196.99
      1496.0798.2596.6093.9697.17
      1570.4977.5298.5796.6198.90
      1691.0886.4499.6999.4699.56
      Kappa86.1 ± 1.691.6 ± 0.899.1 ± 0.398.5 ± 0.399.2 ± 0.3
      OA87.54 ± 1.4092.48 ± 0.6999.20 ± 0.2798.66 ± 0.3199.30 ± 0.24
      AA88.83 ± 2.6494.60 ± 0.5098.98 ± 0.2898.40 ± 0.4399.14 ± 0.30
    • Table 7. Classification results of the data set PA by different models unit: %

      View table

      Table 7. Classification results of the data set PA by different models unit: %

      No.Res-2D-CNNRes-3D-CNNHybridSNR-HybridSNM-HybridSN
      192.1890.8192.1596.2195.04
      297.4796.6399.5399.7099.88
      315.3366.5490.5190.9393.77
      494.9496.2492.5094.6292.92
      599.4599.8697.7599.7999.57
      688.0480.7599.4699.2599.50
      740.7068.1296.2594.3694.92
      886.9380.0191.7594.0995.68
      997.4097.3875.0494.2392.85
      Kappa85.0 ± 1.286.9 ± 1.994.8 ± 1.396.7 ± 0.696.8 ± 0.4
      OA88.72 ± 0.8590.16 ± 1.4096.07 ± 0.9697.55 ± 0.4897.60 ± 0.33
      AA79.16 ± 3.1086.26 ± 2.1092.77 ± 2.3395.91 ± 0.9696.01 ± 0.60
    Tools

    Get Citation

    Copy Citation Text

    Fan Feng, Shuangting Wang, Jin Zhang, Chunyang Wang. Hyperspectral Images Classification Based on Multi-Feature Fusion and Hybrid Convolutional Neural Networks[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 5, 2020

    Accepted: Sep. 10, 2020

    Published Online: Apr. 12, 2021

    The Author Email: Chunyang Wang (wcy@hpu.edu.cn)

    DOI:10.3788/LOP202158.0810010

    Topics