Optics and Precision Engineering, Volume. 32, Issue 24, 3632(2024)

An optimization method for selecting common points considering position distribution and measuring precision in coordinate transformation

Zhonghe LIU, Zongchun LI*, and Hua HE
Author Affiliations
  • Institute of Geospatial Information, Information Engineering University, Zhengzhou450001, China
  • show less
    References(54)

    [1] CHEN Y, SHEN Y Z, LIU D J. A simplified model of three dimensional-datum transformation adapted to big rotation angle[J]. Geomatics and Information Science of Wuhan University, 29, 1101-1105(2004).

         陈义, 沈云中, 刘大杰. 适用于大旋转角的三维基准转换的一种简便模型[J]. 武汉大学学报(信息科学版), 29, 1101-1105(2004).

    [2] 姚宜斌, 黄承猛, 李程春. 一种适用于大角度的三维坐标转换参数求解算法[J]. 武汉大学学报(信息科学版), 37, 253-256(2012).

         YAO Y B, HUANG C M, LI C C et al. A new algorithm for solution of transformation parameters of big rotation angle’s 3D coordinate[J]. Geomatics and Information Science of Wuhan University, 37, 253-256(2012).

    [3] LÜ Z P, WU J C, GONG Y. Improvement of a three-dimensional coordinate transformation model adapted to big rotation angle based on quaternion[J]. Geomatics and Information Science of Wuhan University, 41, 547-553(2016).

         吕志鹏, 伍吉仓, 公羽. 利用四元数改进大旋转角坐标变换模型[J]. 武汉大学学报(信息科学版), 41, 547-553(2016).

    [4] LIU L, HE Z G, ZHENG Z Y et al. An iterative algorithm for solving the transformation parameters of big rotation angle’s 3D coordinate[J]. Science of Surveying and Mapping, 46, 65-69, 76(2021).

         刘磊, 何占国, 郑作亚. 大角度三维坐标转换参数的一种迭代解法[J]. 测绘科学, 46, 65-69, 76(2021).

    [5] 姚吉利, 韩保民, 杨元喜. 罗德里格矩阵在三维坐标转换严密解算中的应用[J]. 武汉大学学报(信息科学版), 31, 1094-1096, 1119(2006).

         YAO J L, HAN B M, YANG Y X. Applications of lodrigues matrix in 3D coordinate transformation[J]. Geomatics and Information Science of Wuhan University, 31, 1094-1096, 1119(2006).

    [6] KUTOGLU H S, MEKIK C, AKCIN H. Effects of errors in coordinates on transformation parameters[J]. Journal of Surveying Engineering, 129, 91-94(2003).

    [7] KUTOGLU H S, VANÍČEK P. Effect of common point selection on coordinate transformation parameter determination[J]. Studia Geophysica et Geodaetica, 50, 525-536(2006).

    [8] 欧吉坤. 粗差的拟准检定法(QUAD法)[J]. 测绘学报, 28, 15-20(1999).

         OU J K. Quasi-Accurate Detection of gross errors (QUAD)[J]. Acta Geodaetica et Cartographica Sinica, 28, 15-20(1999).

    [9] QU W, CHEN H L, ZHANG Q et al. A robust estimation algorithm for the increasing breakdown point based on quasi-accurate detection and its application to parameter estimation of the GNSS crustal deformation model[J]. Journal of Geodesy, 95, 125(2021).

    [10] 郭建锋. 尺度因子的MAD估计及其在测量平差中的应用[J]. 武汉大学学报(信息科学版), 46, 1636-1640(2021).

         GUO J F. MAD estimate of scale factor and its applications in measurement adjustment[J]. Geomatics and Information Science of Wuhan University, 46, 1636-1640(2021).

    [11] 杨玲, 沈云中, 楼立志. 基于中位参数初值的等价权抗差估计方法[J]. 测绘学报, 40, 28-32(2011).

         YANG L, SHEN Y Z, LOU L Z. Equivalent weight robust estimation method based on Median parameter estimates[J]. Acta Geodaetica et Cartographica Sinica, 40, 28-32(2011).

    [12] LIU Z H, LI Z C, HE H et al. Robust solution of coordinate transformation parameters with a high breakdown point[J]. Measurement Science and Technology, 34(2023).

    [13] XU P L. Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness[J]. Journal of Geodesy, 79, 146-159(2005).

    [14] KUTOGLU H S, AYAN T. The role of common point distribution in obtaining reliable parameters for coordinate transformation[J]. Applied Mathematics and Computation, 176, 751-758(2006).

    [15] SHEN Y Z, HU L M, LI B F. Ill-posed problem in determination of coordinate transformation parameters with small area’s data based on bursa model[J]. Acta Geodaetica et Cartographica Sinica, 35, 95-98(2006).

         沈云中, 胡雷鸣, 李博峰. Bursa模型用于局部区域坐标变换的病态问题及其解法[J]. 测绘学报, 35, 95-98(2006).

    [16] 王玉成, 胡伍生. 坐标转换中公共点选取对于转换精度的影响[J]. 现代测绘, 31, 13-15(2008).

         WANG Y C, HU W S. Influence caused by public point selection on accuracy of coordinate conversion[J]. Modern Surveying and Mapping, 31, 13-15(2008).

    [17] 赵宝锋, 张雪, 蒋廷臣. 坐标转换模型及公共点选取对转换成果精度的影响[J]. 淮海工学院学报(自然科学版), 18, 54-56(2009).

         ZHAO B F, ZHANG X, JIANG T C. Effect of coordinate conversion model and the selected common points on the accuracy of conversion results[J]. Journal of Jiangsu Ocean University (Natural Science Edition), 18, 54-56(2009).

    [18] ZHANG H L, LIN J R, ZHU J G. Three-dimensional coordinate transformation accuracy and its influencing factors[J]. Opto-Electronic Engineering, 39, 26-31(2012).

         张皓琳, 林嘉睿, 邾继贵. 三维坐标转换精度及影响因素的研究[J]. 光电工程, 39, 26-31(2012).

    [19] ZHOU Y Y, PAN G R. Accuracy of coordinate transfer influenced by different distributions of common points[J]. Journal of Geodesy and Geodynamics, 33, 105-109(2013).

         周跃寅, 潘国荣. 公共点分布对坐标转换精度的影响[J]. 大地测量与地球动力学, 33, 105-109(2013).

    [20] LI H, LIU W, ZHANG Y et al. Model establishment and error compensation of laser tracker station-transfer[J]. Opt. Precision Eng., 27, 771-783(2019).

         李辉, 刘巍, 张洋. 激光跟踪仪多基站转站精度模型与误差补偿[J]. 光学 精密工程, 27, 771-783(2019).

    [21] REN Y, LIN J R, ZHU J G et al. Coordinate transformation uncertainty analysis in large-scale metrology[J]. IEEE Transactions on Instrumentation and Measurement, 64, 2380-2388(2015).

    [22] 丁克良, 靳婷婷, 蒋志强. 三维多点交会点位空间分布优化与精度分析[J]. 光学 精密工程, 29, 691-700(2021).

         DING K L, JIN T T, JIANG Z Q et al. Optimization and accuracy analysis of point spatial distribution based on three-dimensional multi-point intersection[J]. Opt. Precision Eng., 29, 691-700(2021).

    [23] YIN H, WANG J J, TIAN X. Common points selection in 3D datum transformation[J]. Journal of Geomatics, 41, 14-17(2016).

         尹晖, 王晶晶, 田鑫. 三维空间基准转换公共点选取的新方法[J]. 测绘地理信息, 41, 14-17(2016).

    [24] LI J T, WANG W, SHI B. Common point selection in coordinate transformation based on the distribution in quadrant[J]. Engineering of Surveying and Mapping, 27, 66-70(2018).

         李金涛, 王微, 石波. 坐标系转换中基于象限分布的公共点选取方法[J]. 测绘工程, 27, 66-70(2018).

    [25] 贺俊凯, 徐东升, 王明远. 顾及控制点空间分布的坐标转换模型研究[J]. 全球定位系统, 47, 18-22(2022).

         HE J K, XU D S, WANG M Y et al. Research on coordinate transformation model considering the spatial distribution of control points[J]. GNSS World of China, 47, 18-22(2022).

    [26] 罗传文. 点空间分析: 分维与均匀度[J]. 科技导报, 22, 51-54(2004).

         LUO C W. Point spatial analyses-fractal dimension and uniform index[J]. Science & Technology Review, 22, 51-54(2004).

    [27] LU Q. Fractal Description Method of Spatial Distribution Characteristics of Point Sets[D](2019).

         陆权. 点集空间分布特征的分形描述方法[D](2019).

    [28] DING T, HE X Y, WANG W et al. A common points selection method based on the uniformity of FLTMMS for pre-alignment of particle accelerators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1062, 169147(2024).

    [29] TAN Q M, LU N G, DONG M L et al. Influence of geometrical distribution of common points on the accuracy of coordinate transformation[J]. Applied Mathematics and Computation, 221, 411-423(2013).

    [30] TAN Q M, GAO S, LI D L et al. Determination of reasonable geometrical distribution of markers for accurate motion parameters of rigid body[C], 1033-1037(2013).

    [31] HUANG W B[M]. Modern Adjustment Theory and Its Application(1992).

         黄维彬[M]. 近代平差理论及其应用(1992).

    [32] 李宗春, 张冠宇, 冯其强[M]. 工程测量学(2024).

         LI Z C, ZHANG G Y, FENG Q Q et al[M]. Engineering Surveying(2024).

    Tools

    Get Citation

    Copy Citation Text

    Zhonghe LIU, Zongchun LI, Hua HE. An optimization method for selecting common points considering position distribution and measuring precision in coordinate transformation[J]. Optics and Precision Engineering, 2024, 32(24): 3632

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 8, 2024

    Accepted: --

    Published Online: Mar. 11, 2025

    The Author Email: Zongchun LI (13838092876@139.com)

    DOI:10.37188/OPE.20243224.3632

    Topics