Journal of Infrared and Millimeter Waves, Volume. 44, Issue 2, 251(2025)

Infrared remote sensing image super-resolution network by integration of dense connection and multi-attention mechanism

Xin-hao XU1, Jun WANG1,2, Feng WANG1、*, and Sheng-li SUN2
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves(MoE),School of Information Science and Technology,Fudan University,Shanghai 200433,China
  • 2Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • show less
    References(43)

    [1] Gade R, Moeslund T B. Thermal cameras and applications: a survey[J]. Machine Vision and Applications, 25, 245-262(2014).

    [2] Jiang K, Wang Z, Yi P et al. ATMFN: Adaptive-threshold-based multi-model fusion network for compressed face hallucination[J]. IEEE Transactions on Multimedia, 22, 2734-2747(2019).

    [3] Arrue B C, Ollero A, De Dios J R M. An intelligent system for false alarm reduction in infrared forest-fire detection[J]. IEEE Intelligent Systems and their Applications, 15, 64-73(2000).

    [4] Zhang J, Zhou X, Li L et al. A combined stripe noise removal and deblurring recovering method for thermal infrared remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14(2022).

    [5] Liu A, Liu Y, Gu J et al. Blind image super-resolution: A survey and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 5461-5480(2022).

    [6] Wang X, Sun L, Chehri A et al. A review of GAN-based super-resolution reconstruction for optical remote sensing images[J]. Remote Sensing, 15, 5062(2023).

    [7] Rukundo O, Cao H. Nearest neighbor value interpolation[J]. arXiv preprint(2012).

    [8] Keys R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29, 1153-1160(1981).

    [9] Chen H, Xue J, Zhang S et al. Image super‐resolution based on adaptive cosparse regularization[J]. Electronics Letters, 50, 1834-1836(2014).

    [10] Gauvain J L, Lee C H. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains[J]. IEEE Transactions on Speech and Audio Processing, 2, 291-298(1994).

    [11] Dong C, Loy C C, He K et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2015).

    [12] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 4681-469(2017).

    [13] Gao Z, Chen J. Maritime infrared image super-resolution using cascaded residual network and novel evaluation metric[J]. IEEE Access, 10, 17760-17767(2022).

    [14] Choi K, Kim C, Kang M H et al. Resolution improvement of infrared images using visible image information[J]. IEEE Signal Processing Letters, 18, 611-614(2011).

    [15] Huang Shuo, Hu Yong, Gong Cai-Lan et al. Salience region super-resolution reconstruction algorithm for infrared images based on sparse coding[J]. Journal of Infrared and Millimeter Waves, 39, 388-395(2020).

    [16] Liu S, Yang Y, Li Q et al. Infrared image super resolution using gan with infrared image prior[C], 1004-1009(2019).

    [17] Shao Bao-Tai, Tang Xin-Yi, Jin Lu et al. Single frame infrared image super-resolution algorithm based on generative adversarial nets[J]. Journal of Infrared and Millimeter Waves, 37, 427-432(2018).

    [18] Huang Y, Jiang Z, Lan R et al. Infrared image super-resolution via transfer learning and PSRGAN[J]. IEEE Signal Processing Letters, 28, 982-986(2021).

    [19] Zou Y, Zhang L, Liu C et al. Super-resolution reconstruction of infrared images based on a convolutional neural network with skip connections[J]. Optics and Lasers in Engineering, 146, 106717(2021).

    [20] Deng Wei, Chen Jian-Fei, Zhang Sheng. Super-resolution reconstruction of thermal infrared image in deep residual network with skip connections[J]. Electronics Optics & Control, 30, 27-32(2023).

    [21] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 30(2017).

    [22] Yang F, Yang H, Fu J et al. Learning texture transformer network for image super-resolution[C], 5791-5800(2020).

    [23] Xiao Y, Yuan Q, Jiang K et al. TTST: A top-k token selective transformer for remote sensing image super-resolution[J]. IEEE Transactions on Image Processing, 30, 738-752(2024).

    [24] Liu Z, Lin Y, Cao Y et al. Swin transformer: Hierarchical vision transformer using shifted windows[C], 10022(2021).

    [25] Salimans T, Kingma D P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks[J]. Advances in Neural Information Processing Systems, 29(2016).

    [26] Long Y, Wang X, Xu M et al. Dual self-attention Swin transformer for hyperspectral image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-12(2023).

    [27] Yang F, Yang H, Fu J et al. Learning texture transformer network for image super-resolution[C], 5791-5800(2020).

    [28] Iandola F, Moskewicz M, Karayev S et al. Densenet: Implementing efficient convnet descriptor pyramids[J]. arXiv preprint(2014).

    [29] Liang S B, Song K, Zhao W et al. DASR: Dual-attention transformer for infrared image super-resolution[J]. Infrared Physics & Technology, 133, 104837(2023).

    [30] Dai Y, Gieseke F, Oehmcke S et al. Attentional feature fusion[C], 3560-3569(2021).

    [31] Lim B, Son S, Kim H et al. Enhanced deep residual networks for single image super-resolution[C], 136-144(2017).

    [32] Zhao H, Gallo O, Frosio I et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 3, 47-57(2016).

    [33] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint(2014).

    [34] Jolicoeur-Martineau A. The relativistic discriminator: a key element missing from standard GAN[J]. arXiv preprint(2018).

    [35] Han Y, Liao J, Lu T et al. KCPNet: Knowledge-driven context perception networks for ship detection in infrared imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-19(2022).

    [36] Wu T, Li B, Luo Y et al. MTU-Net: Multilevel TransUNet for space-based infrared tiny ship detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-15(2023).

    [37] Heusel M, Ramsauer H, Unterthiner T et al. Gans trained by a two time-scale update rule converge to a local nash equilibrium[J]. Advances in Neural Information Processing Systems, 30(2017).

    [38] Wang C Y, Yeh I H, Liao H Y M. Yolov9: Learning what you want to learn using programmable gradient information[J]. arXiv preprint(2024).

    [39] Wang X, Yu K, Wu S et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C], 1-16(2018).

    [40] Li A, Zhang L, Liu Y et al. Feature modulation transformer: Cross-refinement of global representation via high-frequency prior for image super-resolution[C], 12514-12524(2023).

    [41] Sun L, Dong J, Tang J et al. Spatially-adaptive feature modulation for efficient image super-resolution[C], 13190-13199(2023).

    [42] Lei S, Shi Z, Mo W. Transformer-based multistage enhancement for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-11(2021).

    [43] Li F, Wu Y, Bai H et al. Learning detail-structure alternative optimization for blind super-resolution[J]. IEEE Transactions on Multimedia, 25, 2825-2838(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xin-hao XU, Jun WANG, Feng WANG, Sheng-li SUN. Infrared remote sensing image super-resolution network by integration of dense connection and multi-attention mechanism[J]. Journal of Infrared and Millimeter Waves, 2025, 44(2): 251

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Interdisciplinary Research on Infrared Science

    Received: Jul. 23, 2024

    Accepted: --

    Published Online: Mar. 14, 2025

    The Author Email: Feng WANG (fengwang@fudan.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2025.02.013

    Topics