Chinese Journal of Lasers, Volume. 48, Issue 5, 0501006(2021)
Research Progress of Mode-Locked Fiber Lasers Based on Saturable Absorbers
[1] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 424, 831-838(2003).
[6] Chong A, Buckley J, Renninger W et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 14, 10095-10100(2006).
[7] Zhao L M, Tang D Y, Wu J. Gain-guided soliton in a positive group-dispersion fiber laser[J]. Optics Letters, 31, 1788-1790(2006).
[9] Du Y Q, Shu X W. Pulse dynamics in all-normal dispersion ultrafast fiber lasers[J]. Journal of the Optical Society of America B, 34, 553-558(2017).
[15] Chédot C, Lecaplain C, Idlahcen S et al. Mode-locked ytterbium-doped fiber lasers: new perspectives[J]. Fiber and Integrated Optics, 27, 341-354(2008).
[17] Liu Z W, Ziegler Z M, Wright L G et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 4, 649-654(2017).
[21] Li D J, Tang D Y, Zhao L M et al. Mechanism of dissipative-soliton-resonance generation in passively mode-locked all-normal-dispersion fiber lasers[J]. Journal of Lightwave Technology, 33, 3781-3787(2015).
[22] Cheng Z C, Li H H, Wang P. Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers[J]. Optics Express, 23, 5972-5981(2015).
[23] Luo A P, Luo Z C, Liu H et al. Noise-like pulse trapping in a figure-eight fiber laser[J]. Optics Express, 23, 10421-10427(2015).
[24] Sidorenko P, Fu W, Wright L G et al. Self-seeded, multi-megawatt, Mamyshev oscillator[J]. Optics Letters, 43, 2672-2675(2018).
[25] Wang G Z. Baker-Murray A A, Blau W J. Saturable absorption in 2D nanomaterials and related photonic devices[J]. Laser & Photonics Reviews, 13, 1800282(2019).
[26] Zhao L M, Lu C, Tam H Y et al. Gain dispersion for dissipative soliton generation in all-normal-dispersion fiber lasers[J]. Applied Optics, 48, 5131-5137(2009).
[29] Szczepanek J, Kardaś T M, Radzewicz C et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers[J]. Optics Letters, 42, 575-578(2017).
[32] Andral U, Si Fodil R, Amrani F et al. Fiber laser mode locked through an evolutionary algorithm[J]. Optica, 2, 275(2015).
[33] Baumeister T, Brunton S L, Nathan Kutz J. Deep learning and model predictive control for self-tuning mode-locked lasers[J]. Journal of the Optical Society of America B, 35, 617-626(2018).
[35] Pu G, Yi L, Zhang L et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis[J]. Light, Science & Applications, 9, 13(2020).
[38] Santiago-Hernandez H, Pottiez O, Duran-Sanchez M et al. Dynamics of noise-like pulsing at sub-ns scale in a passively mode-locked fiber laser[J]. Optics Express, 23, 18840-18849(2015).
[40] Szczepanek J, Kardaś T M, Michalska M et al. Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror[J]. Optics Letters, 40, 3500-3503(2015).
[43] Jiang T X, Cui Y F, Lu P et al. All PM fiber laser mode locked with a compact phase biased amplifier loop mirror[J]. IEEE Photonics Technology Letters, 28, 1786-1789(2016).
[44] Liu G Y, Jiang X H, Wang A M et al. Robust 700 MHz mode-locked Yb: fiber laser with a biased nonlinear amplifying loop mirror[J]. Optics Express, 26, 26003-26008(2018).
[45] Kojou J, Watanabe Y, Agrawal P et al. Wavelength tunable Q-switch laser in visible region with Pr 3+-doped fluoride-glass fiber pumped by GaN diode laser[J]. Optics Communications, 290, 136-140(2013).
[46] Nikkinen J, Härkönen A, Leino I et al. Generation of sub-100 ps pulses at 532, 355, and 266 nm using a SESAM Q-switched microchip laser[J]. IEEE Photonics Technology Letters, 29, 1816-1819(2017).
[49] Luo Z Q, Wu D D, Xu B et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers[J]. Nanoscale, 8, 1066-1072(2016).
[50] Li W S, Du T J, Lan J L et al. 716 nm deep-red passively Q-switched Pr: ZBLAN all-fiber laser using a carbon-nanotube saturable absorber[J]. Optics Letters, 42, 671-674(2017).
[53] Wu D D, Cai Z P, Zhong Y L et al. Compact passive Q-switching Pr 3+-doped ZBLAN fiber laser with black phosphorus-based saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 7-12(2017).
[54] Luo S Y, Yan X G, Xu B et al. Few-layer Bi2Se3-based passively Q-switched Pr: YLF visible lasers[J]. Optics Communications, 406, 61-65(2018).
[55] Li W, Wu J, Guan X et al. Efficient continuous-wave and short-pulse Ho 3+-doped fluorozirconate glass all-fiber lasers operating in the visible spectral range[J]. Nanoscale, 10, 5272-5279(2018).
[56] Li W S, Zhu C H, Rong X F et al. Bidirectional red-light passively Q-switched all-fiber ring lasers with carbon nanotube saturable absorber[J]. Journal of Lightwave Technology, 36, 2694-2701(2018).
[65] Chen R Z, Zheng X, Jiang T. Broadband ultrafast nonlinear absorption and ultra-long exciton relaxation time of black phosphorus quantum dots[J]. Optics Express, 25, 7507-7519(2017).
[66] Zhang M, Wu Q, Zhang F et al. 2D black phosphorus saturable absorbers for ultrafast photonics[J]. Advanced Optical Materials, 7, 1800224(2019).
[67] Tian Q Y, Yin P, Zhang T et al. MXene Ti3C2Tx saturable absorber for passively Q-switched mid-infrared laser operation of femtosecond-laser-inscribed Er: Y2O3 ceramic channel waveguide[J]. Nanophotonics, 9, 2495-2503(2020).
[71] Chen Y, Jiang G B, Chen S Q et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation[J]. Optics Express, 23, 12823-12833(2015).
[72] Jhon Y I, Koo J, Anasori B et al. 2D materials: metallic MXene saturable absorber for femtosecond mode-locked lasers[J]. Advanced Materials, 29, 2496(2017).
[79] Li D, Xue H, Qi M et al. Graphene actively Q-switched lasers[J]. 2D Materials, 4, 025095(2017).
[80] Li H H, Wang Z K, Li C et al. Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber[J]. Optics Express, 25, 26546-26553(2017).
[81] Fu S J, Sheng Q, Zhu X S et al. Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference[J]. Optics Express, 23, 17255-17262(2015).
[84] Ma C Y, Khanolkar A, Zang Y M et al. Ultrabroadband, few-cycle pulses directly from a Mamyshev fiber oscillator[J]. Photonics Research, 8, 65-69(2020).
Get Citation
Copy Citation Text
Zikai Dong, Yanrong Song. Research Progress of Mode-Locked Fiber Lasers Based on Saturable Absorbers[J]. Chinese Journal of Lasers, 2021, 48(5): 0501006
Category: laser devices and laser physics
Received: Nov. 2, 2020
Accepted: Feb. 5, 2021
Published Online: Mar. 12, 2021
The Author Email: Song Yanrong (yrsong@bjut.edu.cn)