Acta Optica Sinica, Volume. 42, Issue 24, 2428001(2022)

Hybrid Source Photogrammetry of Optical Remote Sensing Images and Space-Borne LiDAR

Xinlei Zhang1,2,3、*, Qing Xu1,2,3, Shuai Xing1,2,3, Ming Gao1,2,3, Pengcheng Li1,2,3, Guoping Zhang1,2,3, and Jin Wang1,2,3
Author Affiliations
  • 1Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, Henan , China
  • 2Collaborative Innovation Center of Geo-Information Technology for Smart Central Plains, Zhengzhou 450001, Henan , China
  • 3Key Laboratory of Spatiotemporal Perception and Intelligent Processing, Ministry of Natural Resources, Zhengzhou 450001, Henan , China
  • show less
    References(23)

    [1] Markus T, Neumann T, Martino A et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote Sensing of Environment, 190, 260-273(2017).

    [2] Xie H, Xu Q, Ye D et al. A comparison and review of surface detection methods using MBL, MABEL, and ICESat-2 photon-counting laser altimetry data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7604-7623(2021).

    [3] Popescu S C, Zhou T, Nelson R et al. Photon counting LiDAR: an adaptive ground and canopy height retrieval algorithm for ICESat-2 data[J]. Remote Sensing of Environment, 208, 154-170(2018).

    [4] Zhou X, Yang J, Li S. Model of sea surface echos from spaceborne single photon lidar[J]. Acta Optica Sinica, 41, 1928002(2021).

    [5] Yao J Q, Tang X M, Li G Y et al. Cloud detection of laser altimetry satellite ICESat-2 and the related algorithm[J]. Laser & Optoelectronics Progress, 57, 131408(2020).

    [6] Li A, Tang X M, Zhu X Y. Geometric positioning accuracy evaluation of domestic high-resolution satellite images based on unified verification field method[J]. Acta Optica Sinica, 41, 0328001(2021).

    [7] Rosiek M R, Kirk R L, Archinal B A et al. Utility of Viking orbiter images and products for Mars mapping[J]. Photogrammetric Engineering & Remote Sensing, 71, 1187-1195(2005).

    [8] Yoon J S, Shan J. Combined adjustment of MOC stereo imagery and MOLA altimetry data[J]. Photogrammetric Engineering & Remote Sensing, 71, 1179-1186(2005).

    [9] Di K C, Hu W M, Liu Y L et al. Co-registration of Chang’E-1 stereo images and laser altimeter data with crossover adjustment and image sensor model refinement[J]. Advances in Space Research, 50, 1615-1628(2012).

    [10] He Y, Wu S M, Xing S. Block adjustment of Changè-1 CCD images based on RFM[J]. Science of Surveying and Mapping, 38, 5-6, 15(2013).

    [11] Li G Y, Tang X M, Gao X M et al. ZY-3 Block adjustment supported by GLAS laser altimetry data[J]. The Photogrammetric Record, 31, 88-107(2016).

    [12] Li G Y, Tang X M, Gao X M et al. Improve the ZY-3 height accuracy using ICEsat/GLAS laser altimeter data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1, 37-42(2016).

    [13] Li G Y, Tang X M, Gao X M et al. Integration of ZY3-02 satellite laser altimetry data and stereo images for high-accuracy mapping[J]. Photogrammetric Engineering & Remote Sensing, 84, 569-578(2018).

    [14] Wang J, Zhang Y, Zhang Z X et al. ICESat laser points assisted block adjustment for mapping satellite-1 stereo imagery[J]. Acta Geodaetica et Cartographica Sinica, 47, 359-369(2018).

    [15] Tao C V, Hu Y. A comprehensive study of the rational function model for photogrammetric processing[J]. Photogrammetric Engineering and Remote Sensing, 67, 1347-1357(2001).

    [16] Zhang X L, Xing S, Xu Q et al. Joint block adjustment for ATLAS data and ZY3-02 stereo imagery[J]. Infrared and Laser Engineering, 49, 20200194(2020).

    [17] Filin S, Csathó B. Improvement of elevation accuracy for mass-balance monitoring using in-flight laser calibration[J]. Annals of Glaciology, 34, 330-334(2002).

    [18] Filin S. Recovery of systematic biases in laser altimetry data using natural surfaces[J]. Photogrammetric Engineering & Remote Sensing, 69, 1235-1242(2003).

    [19] Filin S. Calibration of spaceborne laser altimeters-an algorithm and the site selection problem[J]. IEEE Transactions on Geoscience and Remote Sensing, 44, 1484-1492(2006).

    [20] Magruder L A, Brunt K M, Alonzo M. Early ICESat-2 on-orbit geolocation validation using ground-based corner cube retro-reflectors[J]. Remote Sensing, 12, 3653(2020).

    [21] Hofton M A, Blair J B, Luthcke S B et al. Assessing the performance of 20-25 m footprint waveform lidar data collected in ICESat data corridors in Greenland[J]. Geophysical Research Letters, 35, L24501(2008).

    [22] Tang X M, Xie J F, Gao X M et al. The in-orbit calibration method based on terrain matching with pyramid-search for the spaceborne laser altimeter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 1053-1062(2019).

    [23] Neumann T A, Martino A J, Markus T et al. The Ice, Cloud, and Land Elevation Satellite-2 mission: a global geolocated photon product derived from the Advanced Topographic Laser Altimeter System[J]. Remote Sensing of Environment, 233, 111325(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xinlei Zhang, Qing Xu, Shuai Xing, Ming Gao, Pengcheng Li, Guoping Zhang, Jin Wang. Hybrid Source Photogrammetry of Optical Remote Sensing Images and Space-Borne LiDAR[J]. Acta Optica Sinica, 2022, 42(24): 2428001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Mar. 21, 2022

    Accepted: May. 5, 2022

    Published Online: Dec. 14, 2022

    The Author Email: Zhang Xinlei (zxl9602@163.com)

    DOI:10.3788/AOS202242.2428001

    Topics