Opto-Electronic Engineering, Volume. 51, Issue 8, 240089(2024)

Applications of vector vortex beams in laser micro-/nanomachining

Chen Xie1,2、* and Tongyan Liu1
Author Affiliations
  • 1Ultrafast Laser Laboratory, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Opto-electronic Information Science and Technology Ministry of Education, Tianjin University, Tianjin 300072, China
  • show less
    References(78)

    [1] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv Opt Photonics, 1, 1-57(2009).

    [2] Allen L, Beijersbergen M W, Spreeuw R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 45, 8185-8189(1992).

    [3] Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nat Photonics, 15, 253-262(2021).

    [4] Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation[J]. Appl Phys Lett, 88, 221102(2006).

    [5] Zhang Y Q, Dou X J, Yang Y et al. Flexible generation of femtosecond cylindrical vector beams (Invited paper)[J]. Chin Opt Lett, 15, 030007(2017).

    [6] Zheng S J, Lin X, Huang Z Y et al. Light field regulation based on polarization holography[J]. Opto-Electron Eng, 49, 220114(2022).

    [7] Guo Y H, Pu M B, Ma X L et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electron Eng, 44, 3-22(2017).

    [8] Luo X G. Subwavelength artificial structures: opening a new era for engineering optics[J]. Adv Mater, 31, 1804680(2019).

    [9] Pu M B, Guo Y H, Li X et al. Revisitation of extraordinary young’s interference: from catenary optical fields to spin–orbit interaction in metasurfaces[J]. ACS Photonics, 5, 3198-3204(2018).

    [10] Wang D Y, Liu F F, Liu T et al. Efficient generation of complex vectorial optical fields with metasurfaces[J]. Light Sci Appl, 10, 67(2021).

    [11] Ke L, Zhang S M, Li C X et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 50, 230117(2023).

    [12] Fu S Y, Gao C Q. Generation and mode recognition method of vectorial vortex beams[J]. Acta Opt Sin, 43, 1526001(2023).

    [13] Brown T G, Zhan Q W. Focus issue: unconventional polarization states of light[J]. Opt Express, 18, 10775-10776(2010).

    [14] Luo X G, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Appl Phys Lett, 84, 4780-4782(2004).

    [15] Gao P, Yao N, Wang C T et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Appl Phys Lett, 106, 093110(2015).

    [16] Hnatovsky C, Shvedov V G, Krolikowski W et al. Materials processing with a tightly focused femtosecond laser vortex pulse[J]. Opt Lett, 35, 3417-3419(2010).

    [17] Hnatovsky C, Shvedov V, Krolikowski W et al. Revealing local field structure of focused ultrashort pulses[J]. Phys Rev Lett, 106, 123901(2011).

    [18] Shen W C, Cheng C W, Yang M C et al. Fabrication of novel structures on silicon with femtosecond laser pulses[J]. J Laser Micro/Nanoeng, 5, 229-232(2010).

    [19] Hnatovsky C, Shvedov V G, Shostka N et al. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses[J]. Opt Lett, 37, 226-228(2012).

    [20] Lou K, Qian S X, Wang X L et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon[J]. Opt Express, 20, 120-127(2012).

    [21] Nivas J J J, He S T, Rubano A et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate[J]. Sci Rep, 5, 17929(2015).

    [22] Cheng H C, Li P, Liu S et al. Vortex-controlled morphology conversion of microstructures on silicon induced by femtosecond vector vortex beams[J]. Appl Phys Lett, 111, 141901(2017).

    [23] Allegre O J, Li Z Q, Li L. Tailored laser vector fields for high-precision micro-manufacturing[J]. CIRP Ann, 68, 193-196(2019).

    [24] Allegre O J, Perrie W, Edwardson S P et al. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses[J]. J Opt, 14, 085601(2012).

    [25] Allegre O J, Jin Y, Perrie W et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing[J]. Opt Express, 21, 21198-21207(2013).

    [26] Jin Y, Allegre O J, Perrie W et al. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions[J]. Opt Express, 21, 25333-25343(2013).

    [27] Ouyang J, Perrie W, Allegre O J et al. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring[J]. Opt Express, 23, 12562-12572(2015).

    [28] Ghosal A, Allegre O J, Liu Z et al. Surface engineering with structured femtosecond laser vector fields[J]. Results Opt, 5, 100179(2021).

    [29] Lou K, Qian S X, Ren Z C et al. Self-formed two-dimensional near-wavelength microstructures on copper induced by multipulse femtosecond vector optical fields[J]. J Opt Soc Am B, 29, 2282-2287(2012).

    [30] Skoulas E, Manousaki A, Fotakis C et al. Biomimetic surface structuring using cylindrical vector femtosecond laser beams[J]. Sci Rep, 7, 45114(2017).

    [31] Kawaguchi H, Yasuhara R, Yang H T et al. Femtosecond vector vortex laser ablation in tungsten: chiral nano-micro texturing and structuring[J]. Opt Mater Express, 14, 424-434(2024).

    [32] Omatsu T, Chujo K, Miyamoto K et al. Metal microneedle fabrication using twisted light with spin[J]. Opt Express, 18, 17967-17973(2010).

    [33] Toyoda K, Miyamoto K, Aoki N et al. Using optical vortex to control the chirality of twisted metal nanostructures[J]. Nano Lett, 12, 3645-3649(2012).

    [34] Toyoda K, Takahashi F, Takizawa S et al. Transfer of light helicity to nanostructures[J]. Phys Rev Lett, 110, 143603(2013).

    [35] Rahimian M G, Jain A, Larocque H et al. Spatially controlled nano-structuring of silicon with femtosecond vortex pulses[J]. Sci Rep, 10, 12643(2020).

    [36] Ahmed M A, Voß A, Vogel M M et al. Radially polarized high-power lasers[J]. Proc SPIE, 7131, 71311I(2009).

    [37] Kraus M, Ahmed M A, Michalowski A et al. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization[J]. Opt Express, 18, 22305-22313(2010).

    [38] Bhuyan M K, Courvoisier F, Lacourt P A et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams[J]. Appl Phys Lett, 97, 081102(2010).

    [39] Bhuyan M K, Velpula P K, Colombier J P et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams[J]. Appl Phys Lett, 104, 021107(2014).

    [40] Rapp L, Meyer R, Giust R et al. High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams[J]. Sci Rep, 6, 34286(2016).

    [41] He F, Yu J J, Tan Y X et al. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias[J]. Sci Rep, 7, 40785(2017).

    [42] Xie C, Jukna V, Milián C et al. Tubular filamentation for laser material processing[J]. Sci Rep, 5, 8914(2015).

    [43] Baltrukonis J, Ulčinas O, Orlov S et al. High-order vector Bessel-gauss beams for laser micromachining of transparent materials[J]. Phys Rev Appl, 16, 034001(2021).

    [44] Belloni V V, Hassan M, Furfaro L et al. Single shot generation of high-aspect-ratio nano-rods from sapphire by ultrafast first order Bessel beam[J]. Laser Photonics Rev, 18, 2300687(2024).

    [45] Mishchik K, Beuton R, Caulier O D et al. Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses[J]. Opt Express, 25, 33271-33282(2017).

    [46] Cheng G, Rudenko A, D'Amico C et al. Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation[J]. Appl Phys Lett, 110, 261901(2017).

    [47] Zhang G, Cheng G, Bhuyan M et al. Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams[J]. Opt Lett, 43, 2161-2164(2018).

    [48] Lu J F, Hassan M, Courvoisier F et al. 3D structured Bessel beam polarization and its application to imprint chiral optical properties in silica[J]. APL Photonics, 8, 060801(2023).

    [49] Zhao M, Wen J, Hu Q et al. A 3D nanoscale optical disk memory with petabit capacity[J]. Nature, 626, 772-778(2024).

    [50] Zhang Y J, Bai J P. Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams[J]. Opt Express, 17, 3698-3706(2009).

    [51] Jiang Y S, Li X P, Gu M. Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam[J]. Opt Lett, 38, 2957-2960(2013).

    [52] Wang S C, Li X P, Zhou J Y et al. Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics[J]. Opt Lett, 39, 5022-5025(2014).

    [53] Yan W C, Nie Z Q, Zhang X R et al. Magnetization shaping generated by tight focusing of azimuthally polarized vortex multi-Gaussian beam[J]. Appl Opt, 56, 1940-1946(2017).

    [54] Nie Z Q, Ning Z B, Liu X F et al. Creating multiple ultra-long longitudinal magnetization textures by strongly focusing azimuthally polarized circular Airy vortex beams[J]. Opt Express, 31, 19089-19101(2023).

    [55] Liu X F, Yan W C, Liang Y et al. Twisting polarization-tunable subdiffraction-limited magnetization through vectorial beam coupling[J]. Adv Photonics Res, 3, 2100117(2022).

    [56] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 459, 410-413(2009).

    [57] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light Sci Appl, 3, e177(2014).

    [58] Li X P, Lan T H, Tien C H et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nat Commun, 3, 998(2012).

    [59] Xian M C, Xu Y, Ouyang X et al. Segmented cylindrical vector beams for massively-encoded optical data storage[J]. Sci Bull, 65, 2072-2079(2020).

    [60] Berry M V, McDonald K T. Exact and geometrical optics energy trajectories in twisted beams[J]. J Opt A: Pure Appl Opt, 10, 035005(2008).

    [61] Xie C, Giust R, Jukna V et al. Light trajectory in Bessel-Gauss vortex beams[J]. J Opt Soc Am A, 32, 1313-1316(2015).

    [62] Xiao N, Xie C, Jia E S et al. Caustic interpretation of the abruptly autofocusing vortex beams[J]. Opt Express, 29, 19975-19984(2021).

    [63] Xiao N, Xie C, Courvoisier F et al. Caustics of the axially symmetric vortex beams: analysis and engineering[J]. Opt Express, 30, 29507-29517(2022).

    [64] Mills B, Kundys D, Farsari M et al. Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams[J]. Appl Phys A, 108, 651-655(2012).

    [65] Stankevicius E, Gertus T, Rutkauskas M et al. Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique[J]. J Micromech Microeng, 22, 065022(2012).

    [66] Yang L, El-Tamer A, Hinze U et al. Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams[J]. Appl Phys Lett, 105, 041110(2014).

    [67] Yang L, Qian D D, Xin C et al. Direct laser writing of complex microtubes using femtosecond vortex beams[J]. Appl Phys Lett, 110, 221103(2017).

    [68] Yang L, Qian D D, Xin C et al. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam[J]. Opt Lett, 42, 743-746(2017).

    [69] Ji S Y, Yang L, Zhang C C et al. High-aspect-ratio microtubes with variable diameter and uniform wall thickness by compressing Bessel hologram phase depth[J]. Opt Lett, 43, 3514-3517(2018).

    [70] Jia E S, Xie C, Xiao N et al. Two-photon polymerization of femtosecond high-order Bessel beams with aberration correction[J]. Chin Opt Lett, 21, 071203(2023).

    [71] Jia E S, Xie C, Yang Y et al. Abruptly autofocusing vortex beams for rapid controllable femtosecond two-photon polymerization[J]. Materials, 16, 4625(2023).

    [72] Liu S, Qi S X, Zhang Y et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Res, 6, 228-233(2018).

    [73] Pan Y, Gao X Z, Zhang G L et al. Spin angular momentum density and transverse energy flow of tightly focused kaleidoscope-structured vector optical fields[J]. APL Photonics, 4, 096102(2019).

    [74] Lou K, Qian S X, Ren Z C et al. Femtosecond laser processing by using patterned vector optical fields[J]. Sci Rep, 3, 2281(2013).

    [75] Cai M Q, Tu C H, Zhang H H et al. Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields[J]. Opt Express, 21, 31469-31482(2013).

    [76] Cai M Q, Li P P, Feng D et al. Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields[J]. Opt Lett, 41, 1474-1477(2016).

    [77] Cai M Q, Wang Q, Tu C H et al. Dynamically taming focal fields of femtosecond lasers for fabricating microstructures[J]. Chin Opt Lett, 20, 010502(2022).

    [78] Zheng J, Huang J X, Xu S L. Multiscale micro-/nanostructures on single crystalline SiC fabricated by hybridly polarized femtosecond laser[J]. Opt Lasers Eng, 127, 105940(2020).

    Tools

    Get Citation

    Copy Citation Text

    Chen Xie, Tongyan Liu. Applications of vector vortex beams in laser micro-/nanomachining[J]. Opto-Electronic Engineering, 2024, 51(8): 240089

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 17, 2024

    Accepted: Aug. 2, 2024

    Published Online: Nov. 12, 2024

    The Author Email: Chen Xie (谢辰)

    DOI:10.12086/oee.2024.240089

    Topics