Journal of Synthetic Crystals, Volume. 52, Issue 5, 909(2023)
Controllable Preparation and Characterization of Dendritic WS2/Monolayer WS2 Grown by CVD
[1] [1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] [2] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9/10): 351-355.
[3] [3] DU X, SKACHKO I, BARKER A, et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnology, 2008, 3(8): 491-495.
[4] [4] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.
[5] [5] XIA F N, MUELLER T, LIN Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2010: 839-843.
[6] [6] LIU B L, ABBAS A, ZHOU C W. Two-dimensional semiconductors: from materials preparation to electronic applications[J]. Advanced Electronic Materials, 2017, 3(7): 1700045.
[7] [7] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 1-15.
[8] [8] SCHAIBLEY J R, YU H Y, CLARK G, et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 2016, 1(11): 1-15.
[9] [9] XU L, YANG M, SHEN L, et al. Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate[J]. Physical Review B, 2017, 97: 041405.
[10] [10] XUE Y Z, ZHANG Y P, LIU Y, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors[J]. ACS Nano, 2016, 10(1): 573-580.
[11] [11] ZHU B R, ZENG H L, DAI J F, et al. Anomalously robust valley polarization and valley coherence in bilayer WS2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(32): 11606-11611.
[12] [12] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[13] [13] ZHAO W J, RIBEIRO R M, TOH M, et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2[J]. Nano Letters, 2013, 13(11): 5627-5634.
[14] [14] JEON J, JANG S K, JEON S M, et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films[J]. Nanoscale, 2015, 7(5): 1688-1695.
[15] [15] WANG J W, CAI X B, SHI R, et al. Twin defect derived growth of atomically thin MoS2 dendrites[J]. ACS Nano, 2018, 12(1): 635-643.
[16] [16] ZHOU J D, LIN J H, HUANG X W, et al. A library of atomically thin metal chalcogenides[J]. Nature, 2018, 556(7701): 355-359.
[17] [17] RAHMANI TAJI BOYUK M R, GHANBARI H, SIMCHI A, et al. Seedless growth of two-dimensional disc-shaped WS2 layers by chemical vapor deposition[J]. Materials Chemistry and Physics, 2021, 257: 123837.
[18] [18] ZHANG Y, JI Q Q, WEN J X, et al. Monolayer MoS2 dendrites on a symmetry-disparate SrTiO3 (001) substrate: formation mechanism and interface interaction[J]. Advanced Functional Materials, 2016, 26(19): 3299-3305.
[19] [19] JI Q Q, ZHANG Y, SHI J P, et al. Morphological engineering of CVD-grown transition metal dichalcogenides for efficient electrochemical hydrogen evolution[J]. Advanced Materials, 2016, 28(29): 6207-6212.
[20] [20] SHEN J, ZHAN L, WANG C M, et al. Isomeric compound dendrites on a monolayer WS2 substrate: morphological engineering and formation mechanism[J]. ACS Applied Nano Materials, 2021, 4(8): 8408-8416.
[21] [21] ZHAN L, SHEN J, YAN J B, et al. Dendritic WS2 nanocrystal-coated monolayer WS2 nanosheet heterostructures for phototransistors[J]. ACS Applied Nano Materials, 2021, 4(10): 11097-11104.
[22] [22] LI S S, WANG S F, TANG D M, et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals[J]. Applied Materials Today, 2015, 1(1): 60-66.
[23] [23] MOLINA-SNCHEZ A, WIRTZ L. Phonons in single-layer and few-layer MoS2 and WS2[J]. Physical Review B, 2011, 84(15): 155413.
[24] [24] PARKIN W M, BALAN A, LIANG L B, et al. Raman shifts in electron-irradiated monolayer MoS2[J]. ACS Nano, 2016, 10(4): 4134-4142.
[25] [25] LEE C, JEONG B G, YUN S J, et al. Unveiling defect-related Raman mode of monolayer WS2 via tip-enhanced resonance Raman scattering[J]. ACS Nano, 2018, 12(10): 9982-9990.
[26] [26] DONG L Q, WANG Y Y, SUN J C, et al. Facile access to shape-controlled growth of WS2 monolayer via environment-friendly method[J]. 2D Materials, 2018, 6(1): 015007.
[27] [27] XU J G, SROLOVITZ D J, HO D. The adatom concentration profile: a paradigm for understanding two-dimensional MoS2 morphological evolution in chemical vapor deposition growth[J]. ACS Nano, 2021, 15(4): 6839-6848.
[28] [28] WANG S S, RONG Y M, FAN Y, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition[J]. Chemistry of Materials, 2014, 26(22): 6371-6379.
[29] [29] LI X, LI X M, ZANG X B, et al. Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers[J]. Nanoscale, 2015, 7(18): 8398-8404.
[30] [30] CHEN Y. Growth of a large, single-crystalline WS2 monolayer for high-performance photodetectors by chemical vapor deposition[J]. Micromachines, 2021, 12(2): 137.
Get Citation
Copy Citation Text
ZHANG Xin, SHEN Jun, ZHAN Li, CUI Hengqing, GE Binghui, WU Chuanqiang. Controllable Preparation and Characterization of Dendritic WS2/Monolayer WS2 Grown by CVD[J]. Journal of Synthetic Crystals, 2023, 52(5): 909
Category:
Received: Feb. 15, 2023
Accepted: --
Published Online: Jun. 11, 2023
The Author Email:
CSTR:32186.14.