Acta Laser Biology Sinica, Volume. 33, Issue 3, 201(2024)

Research on the Role of Folic Acid in the Development of AnimalEmbryonic Organs

ZENG Xin, CAI Xiaoyan, and LI Fang*
Author Affiliations
  • [in Chinese]
  • show less
    References(79)

    [1] [1] LINASK K K. The heart-placenta axis in the first month of pregnancy: induction and prevention of cardiovascular birth defects[J].Journal of Pregnancy, 2013, 2013: 320413.LINASK K K. The heart-placenta axis in the first month of pregnancy: induction and prevention of cardiovascular birth defects[J].Journal of Pregnancy, 2013, 2013: 320413.

    [2] [2] COPP A J, GREENE N D. Neural tube defects-disorders of neurulation and related embryonic processes[J]. Wiley InterdisciplinaryReviews: Developmental Biology, 2013, 2(2): 213-227.

    [3] [3] HOLMES L B, DRISCOLL S G, ATKINS L. Etiologic heterogeneity of neural-tube defects[J]. The New England Journal of Medicine, 1976, 294(7): 365-369.

    [4] [4] DETRAIT E R, GEORGE T M, ETCHEVERS H C, et al. Humanneural tube defects: developmental biology, epidemiology, andgenetics[J]. Neurotoxicol Teratol, 2005, 27(3): 515-524.

    [5] [5] KOURY M J, PONKA P. New insights into erythropoiesis: theroles of folate, vitamin B12, and iron[J]. Annual Review of Nutrition, 2004, 24: 105-131.

    [6] [6] ZHU H, WLODARCZYK B J, SCOTT M, et al. Cardiovascularabnormalities in Folr1 knockout mice and folate rescue[J]. BirthDefects Research Part A: Clinical and Molecular Teratology, 2007,79(4): 257-268.

    [7] [7] HAN M, SERRANO M C, LASTRA-VICENTE R, et al. Folaterescues lithium, homocysteine and Wnt3A-induced vertebratecardiac anomalies[J]. Disease Models & Mechanisms, 2009,2(9/10): 467-478.

    [8] [8] LINASK K K, HUHTA J. Folate protection from congenital heartdefects linked with canonical Wnt signaling and epigenetics[J].Current Opinion in Pediatrics, 2010, 22(5): 561-566.

    [9] [9] HUHTA J C, LINASK K. When should we prescribe high-dose folic acid to prevent congenital heart defects?[J]. Current Opinionin Cardiology, 2015, 30(1): 125-131.

    [10] [10] CRIDER K S, YANG T P, BERRY R J, et al. Folate and DNAmethylation: a review of molecular mechanisms and the evidencefor folate’s role[J]. Advances in Nutrition, 2012, 3(1): 21-38.

    [11] [11] SHULPEKOVA Y, NECHAEV V, KARDASHEVA S, et al. Theconcept of folic acid in health and disease[J]. Molecules, 2021,26(12): 1-29.

    [12] [12] ZHAO R, DIOP-BOVE N, VISENTIN M, et al. Mechanisms ofmembrane transport of folates into cells and across epithelia[J].Annual Review of Nutrition, 2011, 31: 177-201.

    [13] [13] SEELAN R S, MUKHOPADHYAY P, PHILIPOSE J, et al. Gestational folate deficiency alters embryonic gene expression and cellfunction[J]. Differentiation, 2021, 117: 1-15.

    [14] [14] NAWAZ F Z, KIPREOS E T. Emerging roles for folate receptorFOLR1 in signaling and cancer[J]. Trends Endocrinol Metab,2022, 33(3): 159-174.

    [15] [15] SPIEGELSTEIN O, EUDY J D, FINNELL R H. Identification oftwo putative novel folate receptor genes in humans and mouse[J].Gene, 2000, 258(1/2): 117-125.

    [16] [16] PIEDRAHITA J A, OETAMA B, BENNETT G D, et al. Micelacking the folic acid-binding protein Folbp1 are defective inearly embryonic development[J]. Nature Genetics, 1999, 23(2):228-232.

    [17] [17] TANG L S, WLODARCZYK B J, SANTILLANO D R, et al.Developmental consequences of abnormal folate transport during murine heart morphogenesis[J]. Birth Defects Research PartA: Clinical and Molecular Teratology, 2004, 70(7): 449-458.

    [18] [18] CHINNERY H R, MCMENAMIN P G, DANDO S J. Macrophagephysiology in the eye[J]. Pflugers Archiv: European Journal ofPhysiology, 2017, 469(3/4): 501-515.

    [19] [19] XIA W, HILGENBRINK A R, MATTESON E L, et al. A functional folate receptor is induced during macrophage activation andcan be used to target drugs to activated macrophages[J]. Blood,2009, 113(2): 438-446.

    [20] [20] ROSARIO F J, POWELL T L, JANSSON T. Mechanistic target ofrapamycin (mTOR) regulates trophoblast folate uptake by modulating the cell surface expression of FR-α and the RFC[J]. Scientific Reports, 2016, 6: 1-11.

    [21] [21] TANG L S, SANTILLANO D R, WLODARCZYK B J, et al. Roleof folbp1 in the regional regulation of apoptosis and cell proliferation in the developing neural tube and craniofacies[J]. AmericanJournal of Medical Genetics Part C: Seminars in Medical Genetics,2005, 135(1): 48-58.

    [22] [22] GELINEAU-VAN W J, HELLER S, BAUER L K, et al. Embryonic development in the reduced folate carrier knockout mouse ismodulated by maternal folate supplementation[J]. Birth DefectsResearch Part A: Clinical and Molecular Teratology, 2008, 82(7):494-507.

    [23] [23] KULKARNI A, WILSON D M. The involvement of DNA-damageand repair defects in neurological dysfunction[J]. American Journal of Human Genetics, 2008, 82(3): 539-566.

    [24] [24] ALBINO D, BRIZZOLARA A, MORETTI S, et al. Gene expression profiling identifies eleven DNA repair genes down-regulatedduring mouse neural crest cell migration[J]. The InternationalJournal of Developmental Biology, 2011, 55(1): 65-72.

    [25] [25] WANG X, YU J, WANG J. Neural tube defects and folate deficiency: is DNA repair defective?[J]. International Journal of Molecular Sciences, 2023, 24(3): 1-15.

    [26] [26] OKANO M, BELL D W, HABER D A, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylationand mammalian development[J]. Cell, 1999, 99(3): 247-257.

    [27] [27] WANNER N, VORNWEG J, COMBES A, et al. DNA methyltransferase 1 controls nephron progenitor cell renewal and differentiation[J]. Journal of the American Society of Nephrology:JASN, 2019, 30(1): 63-78.

    [28] [28] LI S Y, PARK J, GUAN Y, et al. DNMT1 in Six2 progenitor cellsis essential for transposable element silencing and kidney development[J]. Journal of the American Society of Nephrology: JASN,2019, 30(4): 594-609.

    [29] [29] LI E, BESTOR T H, JAENISCH R. Targeted mutation of the DNAmethyltransferase gene results in embryonic lethality[J]. Cell,1992, 69(6): 915-926.

    [30] [30] LY A, ISHIGURO L, KIM D, et al. Maternal folic acid supplementation modulates DNA methylation and gene expression in therat offspring in a gestation period dependent and organ-specificmanner[J]. The Journal of Nutritional Biochemistry, 2016, 33:103-110.

    [31] [31] HAN X, CAO X, CABRERA R M, et al. Folate regulation of planar cell polarity pathway and F-actin through folate receptor alpha[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2024, 38(1): 1-16.

    [32] [32] LU X L, WANG L, CHANG S Y, et al. Sonic hedgehog signaling affected by promoter hypermethylation induces aberrant Gli2expression in spina bifida[J]. Molecular Neurobiology, 2016,53(8): 5413-5424.

    [33] [33] LI J, XIE Q, GAO J, et al. Aberrant Gcm1 expression mediatesWnt/β-catenin pathway activation in folate deficiency involved inneural tube defects[J]. Cell Death & Disease, 2021, 12(3): 1-16.

    [34] [34] CZEIZEL A E, DUDAS I, VERECZKEY A, et al. Folate deficiency and folic acid supplementation: the prevention of neural-tubedefects and congenital heart defects[J]. Nutrients, 2013, 5(11):4760-4775.

    [35] [35] RAGHUBEER S, MATSHA T E. Methylenetetrahydrofolate(MTHFR), the one-carbon cycle, and cardiovascular risks[J]. Nutrients, 2021, 13(12): 1-15.

    [36] [36] BOOT M J, STEEGERS-THEUNISSEN R P, POELMANN R E,et al. Cardiac outflow tract malformations in chick embryos exposed to homocysteine[J]. Cardiovascular Research, 2004, 64(2):365-373.

    [37] [37] VANMIL N H, OOSTERBAAN A M, STEEGERS-THEUNISSENR P M. Teratogenicity and underlying mechanisms of homocysteine in animal models: a review[J]. Reproductive Toxicology,2010, 30(4): 520-531.

    [38] [38] MIKAEL L G, DENG L, PAUL L, et al. Moderately high intake offolic acid has a negative impact on mouse embryonic development[J]. Birth Defects Research Part A: Clinical and Molecular Teratology, 2013, 97(1): 47-52.

    [39] [39] PICKELL L, BROWN K, LI D, et al. High intake of folic acid disrupts embryonic development in mice[J]. Birth Defects ResearchPart A: Clinical and Molecular Teratology, 2011, 91(1): 8-19.

    [40] [40] KINTAKA Y, WADA N, SHIODA S, et al. Excessive folic acidsupplementation in pregnant mice impairs insulin secretion andinduces the expression of genes associated with fatty liver in theiroffspring[J]. Heliyon, 2020, 6(4): 1-8.

    [41] [41] BUIJTENDIJK M F J, BARNETT P, VAN DEN HOFF M J B.Development of the human heart[J]. American Journal of Medical Genetics Part C, Seminars in Medical Genetics, 2020, 184(1):7-22.

    [42] [42] LIN L, CUI L, ZHOU W, et al. Beta-catenin directly regulatesIslet1 expression in cardiovascular progenitors and is required formultiple aspects of cardiogenesis[J]. Proceedings of the NationalAcademy of Sciences of the United States of America, 2007,104(22): 9313-9318.

    [43] [43] HAN X, WANG B, JIN D, et al. Precise dose of folic acid supplementation is essential for embryonic heart development in zebrafish[J]. Biology (Basel), 2021, 11(1): 1-15.

    [44] [44] TYAGI R, VERMA S, DASH N, et al. Folate deficiency: a possible association with congenital heart defects[J]. Indian Journalof Pediatrics, 2022, 89(10): 1013-1015.

    [45] [45] TORRENS C, BRAWLEY L, ANTHONY F W, et al. Folatesupplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction[J]. Hypertension,2006, 47(5): 982-987.

    [46] [46] CZEIZEL A E, DUDAS I, VERECZKEY A, et al. Folate deficiency and folic acid supplementation: the prevention of neural-tubedefects and congenital heart defects[J]. Nutrients, 2013, 5(11):4760-4775.

    [47] [47] SMITH S B, KEKUDA R, GU X, et al. Expression of folate receptor alpha in the mammalian retinol pigmented epithelium andretina[J]. Investigative Ophthalmology & Visual Science, 1999,40(5): 840-848.

    [48] [48] BRIDGES C C, El-SHERBENY A, ROON P, et al. A comparisonof caveolae and caveolin-1 to folate receptor alpha in retina andretinal pigment epithelium[J]. The Histochemical Journal, 2001,33(3): 149-158.

    [49] [49] BOZARD B R, GANAPATHY P S, DUPLANTIER J, et al. Molecular and biochemical characterization of folate transport proteins in retinal Müller cells[J]. Investigative Ophthalmology &Visual Science, 2010, 51(6): 3226-3235.

    [50] [50] JWALA J, BODDU S H, PATURI D K, et al. Functional characterization of folate transport proteins in staten’s seruminstitutrabbit corneal epithelial cell line[J]. Current Eye Research, 2011,36(5): 404-416.

    [51] [51] GANAPATHY P S, MOISTER B, ROON P, et al. Endogenouselevation of homocysteine induces retinal neuron death in thecystathionine-beta-synthase mutant mouse[J]. Investigative Ophthalmology & Visual Science, 2009, 50(9): 4460-4470.

    [52] [52] AJITH T A, RANIMENON. Homocysteine in ocular diseases[J].Clinica Chimica Acta, 2015, 450: 316-321.

    [53] [53] WRIGHT A D, MARTIN N, DODSON P M. Homocysteine, folates, and the eye[J]. Eye, 2008, 22(8): 989-993.

    [54] [54] SPIEGELSTEIN O, MITCHELL L E, MERRIWEATHER M Y,et al. Embryonic development of folate binding protein-1 (Folbp1)knockout mice: effects of the chemical form, dose, and timing ofmaternal folate supplementation[J]. Developmental Dynamics:An Official Publication of the American Association of Anatomists, 2004, 231(1): 221-231.

    [55] [55] SIJILMASSI O. Folic acid deficiency and vision: a review[J].Graefe’s Archive for Clinical and Experimental Ophthalmology,2019, 257(8): 1573-1580.

    [56] [56] SIJILMASSI O, DEL R S A, MALDONADO B E, et al. Gestational folic acid deficiency alters embryonic eye development:possible role of basement membrane proteins in eye malformations[J]. Nutrition, 2021, 90: 1-8.

    [57] [57] KEULS R A, FINNELL R H, PARCHEM R J. Maternal metabolism influences neural tube closure[J]. Trends in Endocrinology& Metabolism, 2023, 34(9): 539-553.

    [58] [58] SATO K. Why is folate effective in preventing neural tube closuredefects?[J]. Medical Hypotheses, 2020, 134: 1-4.

    [59] [59] BlOM H J, SHAW G M, DEN H M, et al. Neural tube defects andfolate: case far from closed[J]. Nature Reviews Neuroscience,2006, 7(9): 724-731.

    [60] [60] LIU Y, YUAN Q, WANG Z, et al. A high level of KLF12 causesfolic acid-resistant neural tube defects by activating the Shh signaling pathway in mice[J]. Biology of Reproduction, 2021, 105(4):837-845.

    [61] [61] ISKANDAR B J, NELSON A, RESNICK D, et al. Folic acid supplementation enhances repair of the adult central nervous system[J]. Annals of Neurology, 2004, 56(2): 221-227.

    [62] [62] CHON J, FIELD M S, STOVER P J. Deoxyuracil in DNA anddisease: genomic signal or managed situation?[J]. DNA Repair(Amst), 2019, 77: 36-44.

    [63] [63] LYU X, ZHOU D, GE B, et al. Association of folate metabolitesand mitochondrial function in peripheral blood cells in Alzheimer’sdisease: a matched case-control study[J]. Journal of Alzheimer’sDisease: JAD, 2019, 70(4): 1133-1142.

    [64] [64] PEI P, CHENG X, YU J, et al. Folate deficiency induced H2Aubiquitination to lead to downregulated expression of genes involved in neural tube defects[J]. Epigenetics Chromatin, 2019,12(1): 1-19.

    [65] [65] ICHI S, COSTA F F, BISCHOF J M, et al. Folic acid remodelschromatin on Hes1 and Neurog2 promoters during caudal neuraltube development[J]. The Journal of Biological Chemistry, 2010,285(47): 36922-36932.

    [66] [66] WANG L, SHANGGUAN S, XIN Y, et al. Folate deficiency disturbs hsa-let-7g level through methylation regulation in neural tubedefects[J]. Journal of Cellular and Molecular Medicine, 2017,21(12): 3244-3253.

    [67] [67] SHOOKHOFF J M, GALLICANO G I. A new perspective onneural tube defects: folic acid and microRNA misexpression[J].Genesis, 2010, 48(5): 282-294.

    [68] [68] GUPTA I R, LAPOINTE M, YU O H. Morphogenesis duringmouse embryonic kidney explant culture[J]. Kidney International, 2003, 63(1): 365-376.

    [69] [69] POZZI A, COFFA S, BULUS N, et al. H-Ras, R-Ras, and TC21differentially regulate ureteric bud cell branching morphogenesis[J]. Molecular Biology of The Cell, 2006, 17(4): 2046-2056.

    [70] [70] HIDA M, OMORI S, AWAZU M. ERK and p38 MAP kinase arerequired for rat renal development[J]. Kidney International,2002, 61(4): 1252-1262.

    [71] [71] FISHER C E, MICHAEL L, BARNETT M W, et al. Erk MAP kinase regulates branching morphogenesis in the developing mousekidney[J]. Development, 2001, 128(21): 4329-4338.

    [72] [72] HENRY T Q, MANSANO R Z, NAST C C, et al. GDNF andMAPK-ERK pathway signaling is reduced during nephrogenesisfollowing maternal under-nutrition[J]. Journal of DevelopmentalOrigins of Health and Disease, 2010, 1(1): 67-74.

    [73] [73] TANG M J, CAI Y, TSAI S J, et al. Ureteric bud outgrowth inresponse to RET activation is mediated by phosphatidylinositol3-kinase[J]. Developmental Biology, 2002, 243(1): 128-136.

    [74] [74] KUURE S, POPSUEVA A, JAKOBSON M, et al. Glycogen synthase kinase-3 inactivation and stabilization of beta-catenin inducenephron differentiation in isolated mouse and rat kidney mesenchymes[J]. Journal of the American Society of Nephrology:JASN, 2007, 18(4): 1130-1139.

    [75] [75] HALT K, VAINIO S. Coordination of kidney organogenesis bywnt signaling[J]. Pediatric Nephrology (Berlin, Germany), 2014,29(4): 737-744.

    [76] [76] BIRN H, SPIEGELSTEIN O, CHRISTENSEN E I, et al. Renaltubular reabsorption of folate mediated by folate binding protein 1[J]. Journal of the American Society of Nephrology: JASN, 2005,16(3): 608-615.

    [77] [77] AWAZU M, HIDA M. Maternal nutrient restriction inhibits ureteric bud branching but does not affect the duration of nephrogenesis in rats[J]. Pediatric Research, 2015, 77(5): 633-639.

    [78] [78] MACLENNAN N K, JAMES S J, MELNYK S, et al. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism,and histone acetylation in IUGR rats[J]. Physiological Genomics,2004, 18(1): 43-50.

    [79] [79] AWAZU M, HIDA M. Folic acid supplementation alleviates reduced ureteric branching, nephrogenesis, and global DNA methylation induced by maternal nutrient restriction in rat embryonickidney[J]. PLoS One, 2020, 15(4): 1-13.

    Tools

    Get Citation

    Copy Citation Text

    ZENG Xin, CAI Xiaoyan, LI Fang. Research on the Role of Folic Acid in the Development of AnimalEmbryonic Organs[J]. Acta Laser Biology Sinica, 2024, 33(3): 201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 13, 2024

    Accepted: --

    Published Online: Aug. 14, 2024

    The Author Email: Fang LI (li-evans@hotmail.com)

    DOI:10.3969/j.issn.1007-7146.2024.03.002

    Topics