Chinese Journal of Lasers, Volume. 41, Issue 11, 1102002(2014)

Optical Coherence Imaging System Based on a Polarization-Dependent Semiconductor Optical Amplifier-Enabled Swept Laser

Shang Huaiying1,2,3、*, Huo Li1, Wu Yuanpeng1, and Lou Caiyun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(22)

    [1] [1] G Ripandelli, A M Coppé, A Capaldo, et al.. Optical coherence tomography[J]. Seminars in Ophthalmology, 1998, 13(4): 199-202.

    [2] [2] M Wojtkowski, T Bajraszewski, P Targowski, et al.. Real-time in vivo imaging by high-speed spectral optical coherence tomography[J]. Opt Lett, 2003, 28(19): 1745-1747.

    [3] [3] M R Hee, J A Izatt, E A Swanson, et al.. Optical coherence tomography of the human retina[J]. Archives of Ophthalmology, 1995, 113(3): 325-332.

    [4] [4] J Welzel. Optical coherence tomography in dermatology: a review[J]. Skin Research and Technology, 2001, 7(1): 1-9.

    [5] [5] J Sanz, Z A Fayad. Imaging of atherosclerotic cardiovascular disease[J]. Nature, 2008, 451(1181): 953-957.

    [6] [6] D Huang, E A Swanson, C P Lin, et al.. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

    [7] [7] J F D Boer, B Cense, B H Park, et al.. Improved signal-to-noise ratio in spectral-domain comparedwith time-domain optical coherence tomography[J]. Opt Lett, 2003, 28(21): 2067-2069.

    [8] [8] R Huber, M Wojtkowski, K Taira, et al.. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Opt Express, 2005, 13(9): 3513-3528.

    [9] [9] R Huber, M Wojtkowski, J G Fujimoto. Fourier domain mode locking (FDML): A newlaser operating regime and applications foroptical coherence tomography[J]. Opt Express, 2006, 14(8): 3225-3237.

    [10] [10] R Huber, D C Adler, J G Fujimoto. Buffered Fourierdomain mode locking: Unidirectional swept laser sources foroptical coherence tomography imaging at 370,000 lines/s[J]. Opt Lett, 2006, 31(20): 2975-2977.

    [11] [11] T Klein, W Wieser, C M Eigenwillig, et al.. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser[J]. Opt Express, 2011, 19(4): 3044-3062.

    [12] [12] D C Adler, W Wieser, F Trepanier, et al.. Extended coherence length Fourier domain mode locked lasers at 1310 nm[J]. Opt Express, 2011, 19(21): 20930-20939.

    [13] [13] Jun Zhang, Pinghe Wang, Zhongping Chen, et al.. Long imaging range optical coherence tomography based on a narrowline-width dual band Fourier domain mode-locked swept source[C]. SPIE, 2011, 7889: 78892P.

    [14] [14] Jun Zhang, Joe Jing, Pinghe Wang, et al.. Polarization-maintaining buffered Fourierlocked domain mode-locked sweptsource for optical coherence tomography[J]. Opt Lett, 2011, 36(24): 4788-4790.

    [15] [15] Chen Minghui. Development of Swept Laser Source for Optical Coherence Tomography[D]. Hangzhou: Zhejiang University, 2011. 13-15.

    [16] [16] Chen Minghui, Ding Zhihua, Wang Cheng, et al.. Fiber Fabry-Perot tunable filter based Fourierdomain mode locking swept laser source[J]. Acta Phys Sin, 2013, 62(6): 068703.

    [17] [17] Chen Minghui, Ding Zhihua, Tao Yuanhao, et al.. Development of broad-band high-seed linearized swept laser source[J]. Chinese J Lasers, 2011, 38(2): 0204001.

    [18] [18] Chen Minghui, Ding Zhihua, Wu Tong, et al.. Fourier-domain-mode locking swept laser source[J]. Acta Optica Sinica, 2011, 31(6): 0614002.

    [19] [19] Y Takahashi, A Neogi, H Kawaguchi. Polarization-dependent nonlinear gain in semiconductor lasers[J]. IEEE J Quantum Electron, 1998, 34(9): 1660-1672.

    [20] [20] J A Izatt, M R Hee, G M Owen, et al.. Optical coherence microscopy in scattering media[J]. Opt Lett, 1994, 19(8): 590-592.

    [21] [21] J A Izatt, M D Kulkarni, H Wang, et al.. Optical coherence tomography and microscopy in gastrointestinal tissues[J]. Journal of Selected Topics in Quantum Electronics, 1996, 2(4): 1017-1028.

    [22] [22] J T Fredrich. 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999, 24(7): 551-561.

    CLP Journals

    [1] Chen Lin, Zhong Biao, Xia Yong, Zheng Gongjue, Shi Yanling, Yin Jianping. Design and Characteristics of Diode Laser Amplifier System at 1015 nm[J]. Laser & Optoelectronics Progress, 2015, 52(11): 111407

    [2] Gao Yangyang, Zhou Weining, ei Lili, Wang Xiaxiao. Research on Polarization Characteristic of SLD Start-up Used in Fiber Optic Gyroscope and Its Effect[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112302

    [3] Wang Dan, Yu Zhenhong. Analysis of the Ultrafast Recovery Process of Output Gain of Semiconductor Optical Amplifier with the Effect of Ultrashort Pump Pulse[J]. Laser & Optoelectronics Progress, 2016, 53(1): 11902

    Tools

    Get Citation

    Copy Citation Text

    Shang Huaiying, Huo Li, Wu Yuanpeng, Lou Caiyun. Optical Coherence Imaging System Based on a Polarization-Dependent Semiconductor Optical Amplifier-Enabled Swept Laser[J]. Chinese Journal of Lasers, 2014, 41(11): 1102002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser physics

    Received: Mar. 10, 2014

    Accepted: --

    Published Online: Oct. 8, 2014

    The Author Email: Huaiying Shang (shanghuaiying2010@163.com)

    DOI:10.3788/cjl201441.1102002

    Topics