Optics and Precision Engineering, Volume. 32, Issue 23, 3424(2024)

Sensitivity improvement of NO gas detection based on mid-infrared TDLAS

Wenjin XING, Runhao LI, and Yunfeng BI*
Author Affiliations
  • School of Electromechanical and Information Engineering, Shandong University, Weihai264200, China
  • show less
    References(39)

    [1] 徐辉. TDLAS呼吸气检测温控系统结构优化与控制软件设计[D](2020).

         XU H. Structure Optimization and Control Software Design of TDLAS Breathing Gas Detection Temperature Control System[D](2020).

    [2] HUANG A, CAO Z, ZHAO W S et al. Frequency-division multiplexing and main peak scanning WMS method for TDLAS tomography in flame monitoring[J]. IEEE Transactions on Instrumentation Measurement, 69, 9087-9096(2020).

    [3] XIA J B, ZHU F, ZHANG S S et al. Probing greenhouse gases in turbulent atmosphere by long-range open-path wavelength modulation spectroscopy[J]. Optics and Lasers in Engineering, 117, 21-28(2019).

    [4] ZHENG K Y, ZHENG C T, YAO D et al. A near-infrared C2H2/CH4 dual-gas sensor system combining off-axis integrated-cavity output spectroscopy and frequency-division-multiplexing-based wavelength modulation spectroscopy[J]. The Analyst, 144, 2003-2010(2019).

    [5] SONG K, JUNG E C. Recent developments in modulation spectroscopy for trace gas detection using tunable diode lasers[J]. Applied Spectroscopy Reviews, 38, 395-432(2003).

    [6] WHITTAKER E A, GEHRTZ M, BJORKLUND G C. Residual amplitude modulation in laser electro-optic phase modulation[J]. Journal of the Optical Society of America B, 2, 1320(1985).

    [7] LI H J, RIEKER G B, LIU X et al. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases[J]. Applied Optics, 45, 1052-1061(2006).

    [8] UPADHYAY A, LENGDEN M, WILSON D et al. A new RAM normalized 1f-WMS technique for the measurement of gas parameters in harsh environments and a comparison with 2f/1f[J]. IEEE Photonics Journal, 10, 1-11.

    [9] ZHU C G, ZHANG Z F, WANG P P et al. Investigations on the signal recovery from the non-absorption transmission loss in wavelength modulation spectroscopy[J]. IEEE Sensors Journal, 18, 7513-7519(2018).

    [10] CHAKRABORTY A L, RUXTON K, JOHNSTONE W et al. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line[J]. Optics Express, 17, 9602-9607(2009).

    [11] UPADHYAY A, CHAKRABORTY A L. Calibration-free 2f WMS with in situ real-time laser characterization and 2f RAM nulling[J]. Optics Letters, 40, 4086-4089(2015).

    [12] RUXTON K, CHAKRABORTY A L, JOHNSTONE W et al. Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach[J]. Sensors and Actuators B: Chemical, 150, 367-375(2010).

    [13] ZHU C G, CHANG J, WANG P P et al. Continuously wavelength-tunable light source with constant-power output for elimination of residual amplitude modulation[J]. IEEE Sensors Journal, 15, 316-321.

    [14] ROY A, CHAKRABORTY A L. Intensity modulation-normalized calibration-free 1f and 2f wavelength modulation spectroscopy[J]. IEEE Sensors Journal, 20, 12691-12701(2020).

    [15] BEHERA A, WANG A B. Calibration-free wavelength modulation spectroscopy: symmetry approach and residual amplitude modulation normalization[J]. Applied Optics, 55, 4446-4455(2016).

    [16] MCGETTRICK A J, JOHNSTONE W, CUNNINGHAM R et al. Tunable diode laser spectroscopy with wavelength modulation: calibration-free measurement of gas compositions at elevated temperatures and varying pressure[J]. Journal of Lightwave Technology, 27, 3150-3161.

    [17] JIN W L, ZHANG H, HU M et al. A robust optical sensor for remote multi-species detection combining frequency-division multiplexing and normalized wavelength modulation spectroscopy[J]. Sensors, 21, 1073(2021).

    [18] PENG Z M, DING Y J, CHE L et al. Calibration-free wavelength modulated TDLAS under high absorbance conditions[J]. Optics Express, 19, 23104-23110(2011).

    [19] GOLDENSTEIN C S, STRAND C L, SCHULTZ I A et al. Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes[J]. Applied Optics, 53, 356-367(2014).

    [20] SUN K, CHAO X et al. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers[J]. Measurement Science and Technology, 24, 125203(2013).

    [21] CHEN K, LIU S, MEI L et al. An auto-correction laser photoacoustic spectrometer based on 2f/1f wavelength modulation spectroscopy[J]. The Analyst, 145, 1524-1530(2020).

    [22] HUANG Q B, XU X M, LI C J et al. Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy[J]. Chinese Physics B, 25, 114202(2016).

    [23] YANG C G, MEI L, DENG H et al. Wavelength modulation spectroscopy by employing the first harmonic phase angle method[J]. Optics Express, 27, 12137-12146(2019).

    [24] ZHU C G, WANG P P, CHU T W et al. Second harmonic phase angle method based on WMS for background-free gas detection[J]. IEEE Photonics Journal, 13, 3113503(2021).

    [25] ZHENG F, QIU X B, SHAO L G et al. Measurement of nitric oxide from cigarette burning using TDLAS based on quantum cascade laser[J]. Optics &, 124, 105963(2020).

    [26] 田川, 邹丽昌, 阮斌. 基于EMD的中红外TDLAS检测低浓度NO优化方法研究[J]. 量子电子学报, 38, 661-668(2021).

         TIAN CH, ZOU L CH, RUAN B et al. Optimization method research on low NO concentration detection by mid-infrared TDLAS based on EMD[J]. Chinese Journal of Quantum Electronics, 38, 661-668(2021).

    [27] 陈锦玲. 基于QCLAS的一氧化氮检测系统研究[D](2022).

         CHEN J L. Research on Nitric Oxide Detection System Based on QCLAS[D](2022).

    [28] CAO W, WAN Y, LI CH CH. Design of carbon monoxide detection system based on TDLAS[J]. China Measurement &, 49, 215-219(2023).

         曹旺, 万元, 李橙橙. 基于TDLAS技术的一氧化碳检测系统设计[J]. 中国测试, 49, 215-219(2023).

    [29] ZHAO ZH H, CHEN B, DENG H et al. FeNO detection method based on highly sensitive mid-infrared absorption spectroscopy[J]. Acta Optica Sinica, 42, 228-234(2022).

         赵之豪, 陈兵, 邓昊. 基于高灵敏中红外吸收光谱的FeNO检测方法[J]. 光学学报, 42, 228-234(2022).

    [30] KAMANLI A F, YILDIZ M Z, ARSLAN H et al. Development of a new multi-mode NIR laser system for photodynamic therapy[J]. Optics &, 128, 106229(2020).

    [31] HAIM A, HENRIK B, PREBEN B. Correction to the Beer-Lambert-Bouguer law for optical absorption[J]. Applied Optics, 47, 5354-5357(2008).

    [32] HUMLÍČEK J. An efficient method for evaluation of the complex probability function: The Voigt function and its derivatives[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 21, 309-313(1979).

    [33] ZHANG Y H. Research on NO Gas Detection System Based on 5.23μm Quantum Cascade Laser[D](2023).

         张义恒. 基于5.23 μm量子级联激光器的NO气体检测系统研究[D](2023).

    Tools

    Get Citation

    Copy Citation Text

    Wenjin XING, Runhao LI, Yunfeng BI. Sensitivity improvement of NO gas detection based on mid-infrared TDLAS[J]. Optics and Precision Engineering, 2024, 32(23): 3424

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 11, 2024

    Accepted: --

    Published Online: Mar. 10, 2025

    The Author Email: Yunfeng BI (byf@sdu.edu.cn)

    DOI:10.37188/OPE.20243223.3424

    Topics